Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Gestational hypertension is one of the most common disorders seen in human pregnancies. Though relatively benign on its own, in roughly half of the cases of gestational hypertension the disorder progresses into preeclampsia, a dangerous condition that can prove fatal to expectant mothers. However, gestational hypertension is a condition that is fairly rare to see in other animals. For years, it has been the belief of the scientific community that gestational hypertension and preeclampsia were relatively unique to humans, although there has been some recent evidence that other primates can also suffer from similar conditions, albeit due to different underlying mechanisms. The underlying cause of gestational hypertension in humans is commonly believed to be an improperly implanted placenta. Humans have evolved to have a very invasive placenta to facilitate better oxygen transfer from the mother to the fetus, to support the growth of its large brain.
Despite these risks for gestational hypertension, the hemochorial placenta has been favored because of its advantages in the way that it aids in diffusion from mother to fetus later in pregnancy. The bipedal posture that has allowed humans to walk upright has also led to a reduced cardiac output, and it has been suggested that this is what necessitated humans’ aggressive early placental structures. Increased maternal blood pressure can attempt to make up for lower cardiac output, ensuring that the fetus’s growing brain receives enough oxygen and nutrients. The benefits of being able to walk upright and run on land have outweighed the disadvantages that come from bipedalism, including the placental diseases of pregnancy, such as gestational hypertension. Similarly, the advantages of having a large brain size have outweighed the deleterious effects of having a placenta that does not always convert the spiral arteries effectively, leaving humans vulnerable to contracting gestational hypertension. It is speculated that this was not the case with Neanderthals, and that they died out because their cranial capacity increased too much, and their placentae were not equipped to handle the fetal brain development, leading to widespread preeclampsia and maternal and fetal death.
Gestational hypertension in the early stages of pregnancy (trimester 1) has been shown to improve the health of the child both in its first year of life, and its later life. However, when the disease develops later in the pregnancy (subsequent trimesters), or turns into preeclampsia, there begin to be detrimental health effects for the fetus, including low birth-weight. It has been proposed that fetal genes designed to increase the mother’s blood pressure are so beneficial that they outweigh the potential negative effects that can come from preeclampsia. It has also been suggested that gestational hypertension and preeclampsia have remained active traits due to the cultural capacity of humans, and the tendency for midwives or helpers to aid in delivering babies.
Smoking does not directly cause high blood pressure. However it is a known risk factor for other serious cardiovascular disease.
Excessive alcohol consumption will increase blood pressure over time. Alcohol also contains a high density of calories and may contribute to obesity.
Hypertension results from a complex interaction of genes and environmental factors. Numerous common genetic variants with small effects on blood pressure have been identified as well as some rare genetic variants with large effects on blood pressure. Also, genome-wide association studies (GWAS) have identified 35 genetic loci related to blood pressure; 12 of these genetic loci influencing blood pressure were newly found. Sentinel SNP for each new genetic loci identified has shown an association with DNA methylation at multiple nearby Cpg sites. These sentinel SNP are located within genes related to vascular smooth muscle and renal function. DNA methylation might affect in some way linking common genetic variation to multiple phenotypes even though mechanisms underlying these associations are not understood. Single variant test performed in this study for the 35 sentinel SNP (known and new) showed that genetic variants singly or in aggregate contribute to risk of clinical phenotypes related to high blood pressure.
Blood pressure rises with aging and the risk of becoming hypertensive in later life is considerable. Several environmental factors influence blood pressure. High salt intake raises the blood pressure in salt sensitive individuals; lack of exercise, obesity, and depression can play a role in individual cases. The possible role of other factors such as caffeine consumption, and vitamin D deficiency are less clear. Insulin resistance, which is common in obesity and is a component of syndrome X (or the metabolic syndrome), is also thought to contribute to hypertension. One review suggests that sugar may play an important role in hypertension and salt is just an innocent bystander.
Events in early life, such as low birth weight, maternal smoking, and lack of breastfeeding may be risk factors for adult essential hypertension, although the mechanisms linking these exposures to adult hypertension remain unclear. An increased rate of high blood urea has been found in untreated people with hypertensive in comparison with people with normal blood pressure, although it is uncertain whether the former plays a causal role or is subsidiary to poor kidney function. Average blood pressure may be higher in the winter than in the summer.
Known risk factors for pre-eclampsia include:
- Having never previously given birth
- Diabetes mellitus
- Kidney disease
- Chronic hypertension
- Prior history of pre-eclampsia
- Family history of pre-eclampsia
- Advanced maternal age (>35 years)
- Obesity
- Antiphospholipid antibody syndrome
- Multiple gestation
- Having donated a kidney.
- Having sub-clinical hypothyroidism or thyroid antibodies
- Placental abnormalities such as placental ischemia.
There is also an increased risk for cardiovascular complications, including hypertension and ischemic heart disease, and kidney disease. Other risks include stroke and venous thromboembolism. It seems pre-eclampsia does not increase the risk of cancer.
Lowered blood supply to the fetus in pre-eclampsia causes lowered nutrient supply, which could result in intrauterine growth restriction (IUGR) and low birth weight. The fetal origins hypothesis states that fetal undernutrition is linked with coronary heart disease later in adult life due to disproportionate growth.
Because preeclampsia leads to a mismatch between the maternal energy supply and fetal energy demands, pre-eclampsia can lead to IUGR in the developing fetus. Infants suffering from IUGR are prone to suffer from poor neuronal development and in increased risk for adult disease according to the Barker hypothesis. Associated adult diseases of the fetus due to IUGR include, but are not limited to, coronary artery disease (CAD), type 2 diabetes mellitus (T2DM), cancer, osteoporosis, and various psychiatric illnesses.
The risk of pre-eclampsia and development of placental dysfunction has also been shown to be recurrent cross-generationally on the maternal side and most likely on the paternal side. Fetuses born to mothers that were born small for gestational age (SGA) were 50% more likely to develop preeclampsia while fetuses born to both SGA parents were three-fold more likely to develop preeclampsia in future pregnancies.
Secondary hypertension results from an identifiable cause. Kidney disease is the most common secondary cause of hypertension. Hypertension can also be caused by endocrine conditions, such as Cushing's syndrome, hyperthyroidism, hypothyroidism, acromegaly, Conn's syndrome or hyperaldosteronism, renal artery stenosis (from atherosclerosis or fibromuscular dysplasia), hyperparathyroidism, and pheochromocytoma. Other causes of secondary hypertension include obesity, sleep apnea, pregnancy, coarctation of the aorta, excessive eating of liquorice, excessive drinking of alcohol, and certain prescription medicines, herbal remedies, and illegal drugs such as cocaine and methamphetamine. Arsenic exposure through drinking water has been shown to correlate with elevated blood pressure.
Factors increasing the risk (to either the woman, the fetus/es, or both) of pregnancy complications beyond the normal level of risk may be present in a woman's medical profile either before she becomes pregnant or during the pregnancy. These pre-existing factors may relate to physical and/or mental health, and/or to social issues, or a combination.
Some common risk factors include:
- Age of either parent
- Adolescent parents
- Older parents
- Exposure to environmental toxins in pregnancy
- Exposure to recreational drugs in pregnancy:
- Ethanol during pregnancy can cause fetal alcohol syndrome and fetal alcohol spectrum disorder.
- Tobacco smoking and pregnancy, when combined, causes twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
- Prenatal cocaine exposure is associated with, for example, premature birth, birth defects and attention deficit disorder.
- Prenatal methamphetamine exposure can cause premature birth and congenital abnormalities. Other investigations have revealed short-term neonatal outcomes to include small deficits in infant neurobehavioral function and growth restriction when compared to control infants. Also, prenatal methamphetamine use is believed to have long-term effects in terms of brain development, which may last for many years.
- Cannabis in pregnancy is possibly associated with adverse effects on the child later in life.
- Exposure to Pharmaceutical drugs in pregnancy. Anti-depressants, for example, may increase risks of such outcomes as preterm delivery.
- Ionizing radiation
- Risks arising from previous pregnancies:
- Complications experienced during a previous pregnancy are more likely to recur.
- Many previous pregnancies. Women who have had five previous pregnancies face increased risks of very rapid labor and excessive bleeding after delivery.
- Multiple previous fetuses. Women who have had more than one fetus in a previous pregnancy face increased risk of mislocated placenta.
- Multiple pregnancy, that is, having more than one fetus in a single pregnancy.
- Social and socioeconomic factors. Generally speaking, unmarried women and those in lower socioeconomic groups experience an increased level of risk in pregnancy, due at least in part to lack of access to appropriate prenatal care.
- Unintended pregnancy. Unintended pregnancies preclude preconception care and delays prenatal care. They preclude other preventive care, may disrupt life plans and on average have worse health and psychological outcomes for the mother and, if birth occurs, the child.
- Height. Pregnancy in women whose height is less than 1.5 meters (5 feet) correlates with higher incidences of preterm birth and underweight babies. Also, these women are more likely to have a small pelvis, which can result in such complications during childbirth as shoulder dystocia.
- Weight
- Low weight: Women whose pre-pregnancy weight is less than 45.5 kilograms (100 pounds) are more likely to have underweight babies.
- Obese women are more likely to have very large babies, potentially increasing difficulties in childbirth. Obesity also increases the chances of developing gestational diabetes, high blood pressure, preeclampsia, experiencing postterm pregnancy and/or requiring a cesarean delivery.
- Intercurrent disease in pregnancy, that is, a disease and condition not necessarily directly caused by the pregnancy, such as diabetes mellitus in pregnancy, SLE in pregnancy or thyroid disease in pregnancy.
Few women of childbearing age have high blood pressure, up to 11% develop hypertension of pregnancy. While generally benign, it may herald three complications of pregnancy: pre-eclampsia, HELLP syndrome and eclampsia. Follow-up and control with medication is therefore often necessary.
Certain medications, including NSAIDs (Motrin/Ibuprofen) and steroids can cause hypertension. Other medications include extrogens (such as those found in oral contraceptives with high estrogenic activity), certain antidepressants (such as venlafaxine), buspirone, carbamazepine, bromocriptine, clozapine, and cyclosporine.
High blood pressure that is associated with the sudden withdrawal of various antihypertensive medications is called rebound hypertension. The increases in blood pressure may result in blood pressures greater than when the medication was initiated. Depending on the severity of the increase in blood pressure, rebound hypertension may result in a hypertensive emergency. Rebound hypertension is avoided by gradually reducing the dose (also known as "dose tapering"), thereby giving the body enough time to adjust to reduction in dose. Medications commonly associated with rebound hypertension include centrally-acting antihypertensive agents, such as clonidine and methyl-dopa.
Other herbal or "natural products" which have been associated with hypertension include ma huang, St John's wort, and licorice.
Some disorders and conditions can mean that pregnancy is considered high-risk (about 6-8% of pregnancies in the USA) and in extreme cases may be contraindicated. High-risk pregnancies are the main focus of doctors specialising in maternal-fetal medicine.
Serious pre-existing disorders which can reduce a woman's physical ability to survive pregnancy include a range of congenital defects (that is, conditions with which the woman herself was born, for example, those of the heart or , some of which are listed above) and diseases acquired at any time during the woman's life.
Hypothyroidism is diagnosed by noting a high TSH associated with a subnormal T4 concentration. Subclinical hypothyroidism (SCH) is present when the TSH is high but the T4 level is in the normal range but usually low normal. SCH is the commonest form of hypothyroidism in pregnancy and is usually due to progressive thyroid destruction due to autoimmune thyroid disease.
Several studies, mostly retrospective, have shown an association between overt hypothyroidism and adverse fetal and obstetric outcomes (e.g. Glinoer 1991). Maternal complications such as miscarriages, anaemia in pregnancy, pre-eclampsia, abruptio placenta and postpartum haemorrhage can occur in pregnant women with overt hypothyroidism. Also, the offspring of these mothers can have complications such as premature birth, low birth weight and increased neonatal respiratory distress. Similar complications have been reported in mothers with subclinical hypothyroidism. A three-fold risk of placental abruption and a two-fold risk of pre-term delivery were reported in mothers with subclinical hypothyroidism. Another study showed a higher prevalence of subclinical hypothyroidism in women with pre-term delivery (before 32 weeks) compared to matched controls delivering at term. An association with adverse obstetrics outcome has also been demonstrated in pregnant women with thyroid autoimmunity independent of thyroid function. Treatment of hypothyroidism reduces the risks of these adverse obstetric and fetal outcomes; a retrospective study of 150 pregnancies showed that treatment of hypothyroidism led to reduced rates of abortion and premature delivery. Also, a prospective intervention trial study showed that treatment of euthyroid antibody positive pregnant women led to fewer rates of miscarriage than non treated controls.
It has long been known that cretinism (i.e. gross reduction in IQ) occurs in areas of severe iodine deficiency due to the fact that the mother is unable to make T4 for transport to the fetus particularly in the first trimester. This neurointellectual impairment (on a more modest scale) has now been shown in an iodine sufficient area (USA) where a study showed that the IQ scores of 7-9 year old children, born to mothers with undiagnosed and untreated hypothyroidism in pregnancy, were seven points lower than those of children of matched control women with normal thyroid function in pregnancy. Another study showed that persistent hypothyroxinaemia at 12 weeks gestation was associated with an 8-10 point deficit in mental and motor function scores in infant offspring compared to children of mothers with normal thyroid function. Even maternal thyroid peroxidase antibodies were shown to be associated with impaired intellectual development in the offspring of mothers with normal thyroid function. Interestingly, it has been shown that it is only the maternal FT4 levels that are associated with child IQ and brain morphological outcomes, as opposed to maternal TSH levels.
Eclampsia, like pre-eclampsia, tends to occur more commonly in first pregnancies. Women who have long term high blood pressure before becoming pregnant have a greater risk of pre-eclampsia. Furthermore, women with other pre-existing vascular diseases (diabetes or nephropathy) or thrombophilic diseases such as the antiphospholipid syndrome are at higher risk to develop pre-eclampsia and eclampsia. Having a large placenta (multiple gestation, hydatidiform mole) also predisposes women to eclampsia. In addition, there is a genetic component: a woman whose mother or sister had the condition is at higher risk than otherwise. Women who have experienced eclampsia are at increased risk for pre-eclampsia/eclampsia in a later pregnancy.
The four goals of the treatment of eclampsia are to stop and prevent further convulsions, to control the elevated blood pressure, to deliver the baby as promptly as possible, and to monitor closely for the onset of multi-organ failure.
Many factors can contribute to the loss of uterine muscle tone, including:
- overdistention of the uterus
- multiple gestations
- polyhydramnios
- fetal macrosomia
- prolonged labor
- oxytocin augmentation of labor
- grand multiparity (having given birth 5 or more times)
- precipitous labor (labor lasting less than 3 hours)
- magnesium sulfate treatment of preeclampsia
- chorioamnionitis
- halogenated anesthetics
- uterine leiomyomata
- full bladder
- retained colyledon, placental fragments
- placenta previa
- placental abruption
- constriction ring
- incomplete separation of the placenta
Patients with hypertensive encephalopathy who are promptly treated usually recover without deficit. However, if treatment is not administered, the condition can lead to death.
In rare cases, inherited bleeding disorders, like hemophilia, von Willebrand disease (vWD), or factor IX or XI deficiency, may cause severe postpartum hemorrhage, with an increased risk of death particularly in the postpartum period. The risk of postpartum hemorrhage in patients with vWD and carriers of hemophilia has been found to be 18.5% and 22% respectively. This pathology occurs due to the normal physiological drop in maternal clotting factors after delivery which greatly increases the risk of secondary postpartum hemorrhage.
Another bleeding risk factor is thrombocytopenia, or decreased platelet levels, which is the most common hematological change associated with pregnancy induced hypertension. If platelet counts drop less than 100,000 per microliter the patient will be at a severe risk for inability to clot during and after delivery.
Hypothyroidism is common in pregnancy with an estimated prevalence of 2-3% and 0.3-0.5% for subclinical and overt hypothyroidism respectively. Endemic iodine deficiency accounts for most hypothyroidism in pregnant women worldwide while chronic autoimmune thyroiditis is the most common cause of hypothyroidism in iodine sufficient parts of the world. The presentation of hypothyroidism in pregnancy is not always classical and may sometimes be difficult to distinguish from the symptoms of normal pregnancy. A high index of suspicion is therefore required especially in women at risk of thyroid disease e.g. women with a personal or family history of thyroid disease, goitre, or co-existing primary autoimmune disorder like type 1 diabetes.
With treatment, maternal mortality is about 1 percent, although complications such as placental abruption, acute renal failure, subcapsular liver hematoma, permanent liver damage, and retinal detachment occur in about 25% of women. Perinatal mortality (stillbirths plus death in infancy) is between 73 and 119 per 1000 babies of woman with HELLP, while up to 40% are small for gestational age. In general, however, factors such as gestational age are more important than the severity of HELLP in determining the outcome in the baby.
Antepartum bleeding (APH), also prepartum hemorrhage, is bleeding during pregnancy from the 24th week (sometimes defined as from the 20th week) gestational age to full term (40th week). The primary consideration is the presence of a placenta previa which is a low lying placenta at or very near to the internal cervical os. This condition occurs in roughly 4 out of 1000 pregnancies and usually needs to be resolved by delivering the baby via cesarean section. Also a placental abruption (in which there is premature separation of the placenta) can lead to obstetrical hemorrhage, sometimes concealed. This pathology is of important consideration after maternal trauma such as a motor vehicle accident or fall.
Other considerations to include when assessing antepartum bleeding are: sterile vaginal exams that are performed in order to assess dilation of the patient when the 40th week is approaching. As well as cervical insufficiency defined as a midtrimester (14th-26th week) dilation of the cervix which may need medical intervention to assist in keeping the pregnancy sustainable.
Benign hypertension or benign essential hypertension are historical terms that are considered misleading as hypertension is never benign, and consequently they have fallen out of use (see history of hypertension). The terminology persisted in the International Classification of Disease (ICD9) but is not included in the current ICD10.
The initial aim of treatment in hypertensive crises is to rapidly lower the diastolic pressure to about 100 to 105 mmHg; this goal should be achieved within two to six hours, with the maximum initial fall in BP not exceeding 25 percent of the presenting value. This level of BP control will allow gradual healing of the necrotizing vascular lesions. More aggressive hypotensive therapy is both unnecessary and may reduce the blood pressure below the autoregulatory range, possibly leading to ischemic events (such as stroke or coronary disease).
Once the BP is controlled, the person should be switched to medication by mouth, with the diastolic pressure being gradually reduced to 85 to 90 mmHg over two to three months. The initial reduction to a diastolic pressure of approximately 100 mmHg is often associated with a modest worsening of renal function; this change, however, is typically transient as the vascular disease tends to resolve and renal perfusion improves over one to three months. Antihypertensive therapy should not be withheld in this setting unless there has been an excessive reduction in BP. A change in medication, however, is indicated if the decline in renal function is temporally related to therapy with an angiotensin (ACE) converting enzyme inhibitor or angiotensin II receptor blocker, which can interfere with renal autoregulation and produce acute renal failure in patients with bilateral renal artery stenosis. (See "Renal effects of ACE inhibitors in hypertension".)
Several parenteral antihypertensive agents are most often used in the initial treatment of malignant hypertension.
- Nitroprusside – an arteriolar and venous dilator, given as an intravenous infusion. Nitroprusside acts within seconds and has a duration of action of only two to five minutes. Thus, hypotension can be easily reversed by temporarily discontinuing the infusion, providing an advantage over the drugs listed below. However, the potential for cyanide toxicity limits the prolonged use of nitroprusside, particularly in patients with renal insufficiency.
- Nicardipine – an arteriolar dilator, given as an intravenous infusion.
- Clevidipine – a short-acting dihydropyridine calcium channel blocker. It reduces blood pressure without affecting cardiac filling pressures or causing reflex tachycardia.
- Labetalol – an alpha- and beta-adrenergic blocker, given as an intravenous bolus or infusion. Bolus followed by infusion.
- Fenoldopam – a peripheral dopamine-1 receptor agonist, given as an intravenous infusion.
- Oral agents — A slower onset of action and an inability to control the degree of BP reduction has limited the use of oral antihypertensive agents in the therapy of hypertensive crises. They may, however, be useful when there is no rapid access to the parenteral medications described above. Both sublingual nifedipine and sublingual captopril can substantially lower the BP within 10 to 30 minutes in many patients. A more rapid response is seen when liquid nifedipine is swallowed.
The major risk with oral agents is ischemic symptoms (e.g., angina pectoris, myocardial infarction, or stroke) due to an excessive and uncontrolled hypotensive response. Thus, their use should generally be avoided in the treatment of hypertensive crises if more controllable drugs are available.
Its incidence is reported as 0.5-0.9% of all pregnancies, and 10-20% of women with severe pre-eclampsia. HELLP usually occurs in Caucasian women over the age of 25.
Non-modulating essential hypertension is a form of salt-sensitive hypertension, where sodium intake does not modulate either adrenal or renal vascular responses to angiotensin II. Individuals with this subset have been termed non-modulators. They make up 25-30% of the hypertensive population.