Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In the Western world, the typical age of menopause (last period from natural causes) is between 40 and 61 and the average age for last period is 51 years. The average age of natural menopause in Australia is 51.7 years. In India and the Philippines, the median age of natural menopause is considerably earlier, at 44 years.
In rare cases, a woman's ovaries stop working at a very early age, ranging anywhere from the age of puberty to age 40. This is known as premature ovarian failure and affects 1 to 2% of women by age 40.
Undiagnosed and untreated coeliac disease is a risk factor for early menopause. Coeliac disease can present with several non-gastrointestinal symptoms, in the absence of gastrointestinal symptoms, and most cases escape timely recognition and go undiagnosed, leading to a risk of long-term complications. A strict gluten-free diet reduces the risk. Women with early diagnosis and treatment of coeliac disease present a normal duration of fertile life span.
Women who have undergone hysterectomy with ovary conservation go through menopause on average 3.7 years earlier than the expected age. Other factors that can promote an earlier onset of menopause (usually 1 to 3 years early) are smoking cigarettes or being extremely thin.
It has been estimated that POF affects 1% of the female population.
Menopause confers:
- A possible but contentious increased risk of atherosclerosis. The risk of acute myocardial infarction and other cardiovascular diseases rises sharply after menopause, but the risk can be reduced by managing risk factors, such as tobacco smoking, hypertension, increased blood lipids and body weight.
- Increased risk of osteopenia, osteoporosis, and accelerated lung function decline.
Women who experience menopause before 45 years of age have an increased risk of heart disease, death, and impaired lung function.
Between 5 and 10 percent of women with POF may become pregnant. Currently no fertility treatment has officially been found to effectively increase fertility in women with POF, and the use of donor eggs with in-vitro fertilization (IVF) and adoption are popular as a means of achieving parenthood for women with POF. Some women with POF choose to live child-free. (See impaired ovarian reserve for a summary of recent randomized clinical trials and treatment methods.)
Currently New York fertility researchers are investigating the use of a mild hormone called dehydroepiandrosterone (DHEA) in women with POF to increase spontaneous pregnancy rates. Published results from studies conducted on DHEA have indicated that DHEA may increase spontaneously conceived pregnancies, decrease spontaneous miscarriage rates and improve IVF success rates in women with POF.
Additionally, over the last five years a Greek research team has successfully implemented the use of dehydroepiandrosterone (DHEA) for the fertility treatment of women suffering with POF.The majority of the patients were referred for donor eggs or surrogacy, however after a few months of DHEA administration, some succeeded in getting pregnant through IVF, IUI, IUTPI or natural conception. Many babies have been born after treatment with DHEA.
Ovarian tissue cryopreservation can be performed on prepubertal girls at risk for premature ovarian failure, and this procedure is as feasible and safe as comparable operative procedures in children.
Presentations of low estrogen levels include hot flashes, headaches, lowered libido, and breast atrophy. Reduced bone density leading to secondary osteoporosis and atrophic changes such as pH change in the vagina is also linked to hypoestrogenism.
Low levels of estrogen can lead to dyspareunia and limited genital arousal because of changes in the four layers of the vaginal wall.
Hypoestrogenism is also considered one of the major risk factors for developing uncomplicated urinary tract infections (UTIs) in postmenopausal women who do not take hormone replacement therapy.
Hormone replacement therapy (HRT) with estrogen can be used to treat hypoestrogenism both in premenopausal and postmenopausal women.
Although no large studies showing the long term outcomes for women with hyperthecosis exist, a diagnosis of hyperthecosis may suggest an increased risk for metabolic complications of hyperlipidemia and type 2 diabetes . In postmenopausal women, hyperthecosis may also contribute to the pathogenesis of endometrial polyp, endometrial hyperplasia, and endometrioid adenocarcinoma due to the association of hyperestrinism (excess estrins in the body) and hyperthecosis. Treatment for hyperthecosis is based upon each case, but may range from pharmacological interventions to surgical.
While hyperandrogenism in women is caused by external factors, it can also appear from natural causes.
The etiology of hyperthecosis is unknown, however evidence suggests a possibility of genetic transmission. Hyperthecosis has been documented in familiar patterns. Insulin resistance may also play a role in the pathogenesis of hyperthecosis. Women with hyperthecosis have a significant degree of insulin resistance and insulin may stimulate the ovarian stromal androgen synthesis.
Even though hyperandrogenism is not common in men, there has been studies done to look at the effects of high levels of testosterone in male bodies. A study have shown that even though many of the male participates did not have a behavior changes due to the increased levels of testosterone, there were cases where the participants had instances of uncharacteristic aggression. High levels of testosterone in male has not been seen to have a direct impact on their personality, but within those studies, there have been cases of sudden aggression within the male participants.
Diets high in fruits and vegetables tend to lower the risk of developing fibroids. Fruits, especially citrus, have a greater protective benefit than vegetables. Normal dietary levels of vitamin D is shown to reduce the risk of developing fibroids. No protective benefit has been found with the consumption of folate, whole grains, soy products, or fiber. No association between the consumption of fat, eggs, dairy products has been shown to increase the risk of fibroids.
Selective progesterone receptor modulators, such as progenta, have been under investigation. Another selective progesterone receptor modulator asoprisnil is being tested with promising results as a possible use as a treatment for fibroids, intended to provide the advantages of progesterone antagonists without their adverse effects. Low dietary intake of vitamin D is associated with the development of uterine fibroids.
Approximately 10–25 percent of cases are estimated to result from the use of medications. This is known as non-physiologic gynecomastia. Medications known to cause gynecomastia include ketoconazole, cimetidine, gonadotropin-releasing hormone analogues, human growth hormone, human chorionic gonadotropin, 5α-Reductase inhibitors such as finasteride and dutasteride, estrogens such as those used in transgender women and men with prostate cancer, and antiandrogens such as bicalutamide, flutamide, and spironolactone. Medications that are probably associated with gynecomastia include calcium channel blockers such as verapamil, amlodipine, and nifedipine; risperidone, olanzapine, anabolic steroids, alcohol, opioids, efavirenz, alkylating agents, and omeprazole. Certain components of personal care products such as lavender or tea tree oil and certain supplements such as dong quai and "Tribulus terrestris" have been associated with gynecomastia.
Gynecomastia is the most common benign disorder of the male breast tissue. New cases of gynecomastia are common in three age populations: newborns, adolescents, and men older than 50 years old. Newborn gynecomastia occurs in about 60–90 percent of male babies and most cases resolve on their own. During adolescence, up to 70 percent of males are estimated to exhibit signs of gynecomastia. Senile gynecomastia is estimated to be present in 24–65 percent of men between the ages of fifty and eighty.
The prevalence of gynecomastia in men may have increased in recent years, but the epidemiology of the disorder is not fully understood. The use of anabolic steroids and exposure to chemicals that mimic estrogen in cosmetic products, organochlorine pesticides, and industrial chemicals have been suggested as possible factors driving this increase. According to the American Society of Plastic Surgeons, breast reduction surgeries to correct gynecomastia are becoming increasingly common. In 2006, there were 14,000 procedures of this type performed in the United States alone.
10% of cases occur in women who are ovulating, but progesterone secretion is prolonged because estrogen levels are low. This causes irregular shedding of the uterine lining and break-through bleeding. Some evidence has associated Ovulatory DUB with more fragile blood vessels in the uterus.
It may represent a possible endocrine dysfunction, resulting in menorrhagia or metrorrhagia.
Mid-cycle bleeding may indicate a transient estrogen decline, while late-cycle bleeding may indicate progesterone deficiency.
Hyperestrogenism can be caused by ovarian tumors, genetic conditions such as aromatase excess syndrome (also known as familial hyperestrogenism), or overconsumption of exogenous sources of estrogen, including medications used in hormone replacement therapy and hormonal contraception. Liver cirrhosis is another cause, though through lowered metabolism of estrogen, not oversecretion or overconsumption like the aforementioned.
Treatment may consist of surgery in the case of tumors, lower doses of estrogen in the case of exogenously-mediated estrogen excess, and estrogen-suppressing medications like gonadotropin-releasing hormone analogues and progestogens. In addition, androgens may be supplemented in the case of males.
The risk of pregnancy complications increases as the mother's age increases. Risks associated with childbearing over the age of 50 include an increased incidence of gestational diabetes, hypertension, delivery by caesarean section, miscarriage, preeclampsia, and placenta previa. In comparison to mothers between 20 and 29 years of age, mothers over 50 are at almost three times the risk of low birth weight, premature birth, and extremely premature birth; their risk of extremely low birth weight, small size for gestational age, and fetal mortality was almost double.
Hypogonadism can involve just hormone production or just fertility, but most commonly involves both.
- Examples of hypogonadism that affect hormone production more than fertility are hypopituitarism and Kallmann syndrome; in both cases, fertility is reduced until hormones are replaced but can be achieved solely with hormone replacement.
- Examples of hypogonadism that affect fertility more than hormone production are Klinefelter syndrome and Kartagener syndrome.
Deficiency of sex hormones can result in defective primary or secondary sexual development, or withdrawal effects (e.g., premature menopause) in adults. Defective egg or sperm development results in infertility. The term hypogonadism usually means permanent rather than transient or reversible defects, and usually implies deficiency of reproductive hormones, with or without fertility defects. The term is less commonly used for infertility without hormone deficiency. There are many possible types of hypogonadism and several ways to categorize them. Hypogonadism is also categorized by endocrinologists by the level of the reproductive system that is defective. Physicians measure gonadotropins (LH and FSH) to distinguish primary from secondary hypogonadism. In primary hypogonadism the LH and/or FSH are usually elevated, meaning the problem is in the testicles, whereas in secondary hypogonadism, both are normal or low, suggesting the problem is in the brain.
Dysfunctional uterine bleeding (DUB) is abnormal genital tract bleeding based in the uterus and found in the absence of demonstrable structural or organic disease. It is usually due to hormonal disturbances: reduced levels of progesterone cause low levels of prostaglandin F2alpha and cause menorrhagia (abnormally heavy flow); increased levels of tissue plasminogen activator (TPA) (a fibrinolytic enzyme) lead to more fibrinolysis.
Diagnosis must be made by exclusion, since organic pathology must first be ruled out.
DUB can be classified as "ovulatory" or "anovulatory", depending on whether ovulation is occurring or not. It is usually a menstrual disorder, although abnormal bleeding from the uterus is possible outside menstruation.
Some sources state that the term "dysfunctional" implies a hormonal mechanism. Use of the term "abnormal uterine bleeding" is preferred in today's medicine.
Facts about the conception of pregnancies in this age group can be difficult to determine, but they are nearly always due to the use of IVF with donor eggs.
Many postmenopausal women (who are not using topical estrogen) have at least some degree of vaginal atrophy; however, many women do not actively ask that medical attention be paid to this, possibly because it is naturally caused, or because of the taboo that still exists surrounding aging and sexuality.
The cause of vaginal atrophy is usually the normal decrease in estrogen as a result of menopause. Other causes of decreased estrogen levels are decreased ovarian functioning due to radiation therapy or chemotherapy, immune disorder, removal of the ovaries, entering the post-partum period, and lactation. Various medications can also cause or contribute to vaginal atrophy, including tamoxifen (Nolvadex), danazol (Danocrine), medroxyprogesterone acetate (Depo-Provera), leuprolide (Lupron), and nafarelin acetate (Synarel). Vaginal atrophy can also be idiopathic.
Based on its cause, the type of hypogonadotropic hypogonadism (HH) may be classified as either "primary" or "secondary".
"Primary" HH, also called isolated hypogonadotropic hypogonadism, is responsible for only a small subset of cases of HH, and is characterized by an otherwise normal function and anatomy of the hypothalamus and anterior pituitary. It is caused by congenital disorders such as Kallmann syndrome, CHARGE syndrome, and gonadotropin-releasing hormone insensitivity.
"Secondary" HH, also known as acquired or syndromic HH, is far more common than primary HH, and responsible for most cases of the condition. It has a multitude of different causes, including brain or pituitary tumors, pituitary apoplexy, head trauma, ingestion of certain drugs, and certain systemic diseases and syndromes.
Primary and secondary HH can also be attributed to a genetic trait inherited from the biologic parents. For example, the male mutations of the GnRH coding gene could result in HH. Hormone replacement can be used to initiate puberty and continue if the gene mutation occurs in the gene coding for the hormone. Chromosomal mutations tend to affect the androgen production rather than the HPG axis.
Most women of reproductive age develop small cysts each month, and large cysts that cause problems occur in about 8% of women before menopause. Ovarian cysts are present in about 16% of women after menopause and if present are more likely to be cancer.
Benign ovarian cysts are common in asymptomatic premenarchal girls and found in approximately 68% of ovaries of girls 2–12 years old and in 84% of ovaries of girls 0–2 years old. Most of them are smaller than 9 mm while about 10-20% are larger macrocysts. While the smaller cysts mostly disappear within 6 months the larger ones appear to be more persistent.