Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Muir–Torre was observed to occur in 14 of 50 families (28%) and in 14 of 152 individuals (9.2%) with Lynch syndrome, also known as HNPCC.
The 2 major MMR proteins involved are hMLH1 and hMSH2. Approximately 70% of tumors associated with the MTS have microsatellite instability. While germline disruption of hMLH1 and hMSH2 is evenly distributed in HNPCC, disruption of hMSH2 is seen in greater than 90% of MTS patients.
Gastrointestinal and genitourinary cancers are the most common internal malignancies. Colorectal cancer is the most common visceral neoplasm in Muir–Torre syndrome patients.
A couple studies have been conducted on patients with both Muir–Torre syndrome and Turcot syndrome. It is thought that the two may have some genetic overlap. Both have been associated defects in MLH1 and MSH2 genes.
In one study, a patient with defective MSH2 and MSH6 mismatch repair genes exhibited both syndromes. This is the first case where a patient with genotypic changes consistent with HNPCC has been properly diagnosed with an overlap of both syndromes. Along with neoplasms of the sebaceous gland, this patient developed cerebral neoplasms, characteristic of Turcot syndrome.
Roberts syndrome is an extremely rare condition that only affects about 150 reported individuals. Although there have been only about 150 reported cases, the affected group is quite diverse and spread worldwide. Parental consanguinity (parents are closely related) is common with this genetic disorder. The frequency of Roberts syndrome carriers is unknown.
Several genetic causes of Loeys–Dietz syndrome have been identified. A "de novo" mutation in TGFB3, a ligand of the TGF ß pathway, was identified in an individual with a syndrome presenting partially overlapping symptoms with Marfan Syndrome and Loeys-Dietz Syndrome.
There is considerable research into the causes, diagnosis and treatments for FGIDs. Diet, microbiome, genetics, neuromuscular function and immunological response all interact. Heightened mast cell activation has been proposed to be a common factor among FGIDs, contributing to visceral hypersensitivity as well as epithelial, neuromuscular, and motility dysfunction.
As there is no known cure, Loeys–Dietz syndrome is a lifelong condition. Due to the high risk of death from aortic aneurysm rupture, patients should be followed closely to monitor aneurysm formation, which can then be corrected with interventional radiology or vascular surgery.
Previous research in laboratory mice has suggested that the angiotensin II receptor antagonist losartan, which appears to block TGF-beta activity, can slow or halt the formation of aortic aneurysms in Marfan syndrome. A large clinical trial sponsored by the National Institutes of Health is currently underway to explore the use of losartan to prevent aneurysms in Marfan syndrome patients. Both Marfan syndrome and Loeys–Dietz syndrome are associated with increased TGF-beta signaling in the vessel wall. Therefore, losartan also holds promise for the treatment of Loeys–Dietz syndrome. In those patients in which losartan is not halting the growth of the aorta, irbesartan has been shown to work and is currently also being studied and prescribed for some patients with this condition.
If an increased heart rate is present, atenolol is sometimes prescribed to reduce the heart rate to prevent any extra pressure on the tissue of the aorta. Likewise, strenuous physical activity is discouraged in patients, especially weight lifting and contact sports.
Nevo Syndrome is considered to be a rare disorder. Since its first appearance in 1974, only a handful of cases have been reported. Studies have shown showing similarities between Nevo Syndrome with Ehlers-Danlos syndrome as well as Sotos syndrome. There is an astounding overlap of phenotypic manifestations between Nevo Syndrome and the more frequent Sotos syndrome, which are both caused by the NSD1 deletion. Sotos syndrome is an autosomal dominant condition associated with learning disabilities, a distinctive facial appearance, and overgrowth. Studies have shown an overwhelming occurrence (half of those involved in the study) of Nevo syndrome in those individuals of Middle-Eastern descent.
Respiratory complications are often cause of death in early infancy.
The first gene that could cause the syndrome is described recently and is called NF1X (chromosome 19: 19p13.1).
Overgrowth syndromes in children constitute a group of rare disorders that are typical of tissue hypertrophy. Individual overgrowth syndromes have been shown to overlap with regard to clinical and radiologic features. The details of the genetic bases of these syndromes are unfolding. Any of the three embryonic tissue layers may be involved.The syndromes may manifest in localized or generalized tissue overgrowth. Latitudinal and longitudinal growth may be affected. Nevertheless, the musculoskeletal features are central to the diagnosis of some syndromes such as Proteus syndrome. The time of presentation of children with overgrowth syndromes is an important contributor to the differential diagnosis. Children with some overgrowth syndromes such as Klippel-Trenaunay-Weber syndrome can be readily detectable at birth. In contrast other overgrowth syndromes such as Proteus syndrome usually present in the postnatal period characteristically between the 2nd and 3rd year of life. In general, children with overgrowth syndromes are at increased risk of embryonic tumor development.
Examples of overgrowth syndromes include; Beckwith-Wiedemann syndrome, Proteus syndrome, Sotos syndrome, neurofibromatosis, Simpson-Golabi-Behmel syndrome, Weaver syndrome, Sturge–Weber syndrome, Macrocephaly-capillary malformation, CLOVES syndrome, fragile X syndrome and Klippel-Trenaunay-Weber syndrome.
The incidence of Fraser syndrome is 0.043 per 10,000 live born infants and 1.1 in 10,000 stillbirths, making it a rare syndrome.
Nevo Syndrome is an autosomal recessive disorder. Most times in which a child is afflicted with Nevo Syndrome, both their parents are of average height and weight. It is only until after birth when the characteristic physical traits associated with disease are manifested, and the disorder is actually diagnosed. One study showed that despite the increased growth rates, the patient was completely healthy up until age 6, when he was admitted into the hospital. Nevo syndrome is usually associated with early childhood fatality. Children with Nevo Syndrome have a high occurrence of death due to cardiac arrest because their developing hearts cannot keep up with their overgrown body.
Fraser syndrome (also known as Meyer-Schwickerath's syndrome, Fraser-François syndrome, or Ullrich-Feichtiger syndrome) is an autosomal recessive congenital disorder. Fraser syndrome is named for the geneticist George R. Fraser, who first described the syndrome in 1962.
In the United States, sarcoidosis has a prevalence of approximately 10 cases per 100,000 whites and 36 cases per 100,000 blacks. Heerfordt syndrome is present in 4.1–5.6% of those with sarcoidosis.
Pashayan syndrome also known as Pashayan–Prozansky Syndrome, and blepharo-naso-facial syndrome is a rare syndrome. Facial abnormalities characterise this syndrome as well as malformation of extremities. Specific characteristics would be a bulky, flattened nose, where the face has a mask like appearance and the ears are also malformed.
A subset of Pashayan syndrome has also been described, known as "cerebrofacioarticular syndrome", "Van Maldergem syndrome'" or "Van Maldergem–Wetzburger–Verloes syndrome". Similar symptoms are noted in these cases as in Pashayan syndrome.
Bannayan–Riley–Ruvalcaba syndrome (BRRS) is a rare overgrowth syndrome and hamartomatous disorder with occurrence of multiple subcutaneous lipomas, macrocephaly and hemangiomas. The disease is inherited in an autosomal dominant manner.
The disease belongs to a family of hamartomatous polyposis syndromes, which also includes Peutz–Jeghers syndrome, juvenile polyposis and Cowden syndrome. Mutation of the PTEN gene underlies this syndrome, as well as Cowden syndrome, Proteus syndrome, and Proteus-like syndrome, these four syndromes are referred to as PTEN Hamartoma-Tumor Syndromes.
The prognosis varies widely from case to case, depending on the severity of the symptoms. However, almost all people reported with Aicardi syndrome to date have experienced developmental delay of a significant degree, typically resulting in mild to moderate to profound intellectual disability. The age range of the individuals reported with Aicardi syndrome is from birth to the mid 40s.
There is no cure for this syndrome.
There is no specific treatment or cure for individuals affected with this type of syndrome, though some of the abnormal physical features may be surgically correctable.
Overall, the estimated prevalence of Stickler syndrome is about 1 in 10,000 people. Stickler syndrome affects 1 in 7,500 to 9,000 newborns.
Rosselli–Gulienetti syndrome, also known as Zlotogora–Ogur syndrome and Bowen–Armstrong syndrome, is a type of congenital ectodermal dysplasia syndrome. The syndrome is relatively rare and has only been described in a few cases.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.
Scalp–ear–nipple syndrome (also known as "Finlay–Marks syndrome") is a condition associated with aplasia cutis congenita.
In terms of treatment/management one should observe what signs or symptoms are present and therefore treat those as there is no other current guideline. The affected individual should be monitored for cancer of:
- Thyroid
- Breast
- Renal
3C syndrome is very rare, occurring in less than 1 birth per million. Because of consanguinity due to a founder effect, it is much more common in a remote First Nations village in Manitoba, where 1 in 9 people carries the recessive gene.
The specific cause of camptodactyly remains unknown, but there are a few deficiencies that lead to the condition. A deficient lumbrical muscle controlling the flexion of the fingers, and abnormalities of the flexor and extensor tendons.
A number of congenital syndromes may also cause camptodactyly:
- Jacobsen syndrome
- Beals Syndrome
- Blau syndrome
- Freeman-Sheldon syndrome
- Cerebrohepatorenal syndrome
- Weaver syndrome
- Christian syndrome 1
- Gordon Syndrome
- Jacobs arthropathy-camptodactyly syndrome
- Lenz microphthalmia syndrome
- Marshall-Smith-Weaver syndrome
- Oculo-dento-digital syndrome
- Tel Hashomer camptodactyly syndrome
- Toriello-Carey syndrome
- Stuve-Wiedemann syndrome
- Loeys-Dietz syndrome
- Fryns syndrome
- Marfan's syndrome
- Carnio-carpo-tarsal dysthropy