Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Cholesterol gallstone formation risk factors include age, female sex, family history, race, pregnancy, parity, obesity, birth control, diabetes mellitus, cirrhosis, prolonged fasting, rapid weight loss, total parenteral nutrition, ileal disease and impaired gallbladder emptying.
Patients that have gallstones and biliary colic are at increased risk for complications, including cholecystitis. Complications from gallstone disease is 0.3% per year and therefore prophylactic cholecystectomy are rarely indicated unless part of a special population that includes porcelain gallbladder, individuals eligible for organ transplant, diabetics and those with sickle cell anemia.
Gallstone risk increases for females (especially before menopause) and for people near or above 40 years; the condition is more prevalent among both North and South Americans and among those of European descent than among other ethnicities. A lack of melatonin could significantly contribute to gallbladder stones, as melatonin inhibits cholesterol secretion from the gallbladder, enhances the conversion of cholesterol to bile, and is an antioxidant, which is able to reduce oxidative stress to the gallbladder. Researchers believe that gallstones may be caused by a combination of factors, including inherited body chemistry, body weight, gallbladder motility (movement), and low calorie diet. The absence of such risk factors does not, however, preclude the formation of gallstones.
Nutritional factors that may increase risk of gallstones include constipation; eating fewer meals per day; low intake of the nutrients folate, magnesium, calcium, and vitamin C; low fluid consumption; and, at least for men, a high intake of carbohydrate, a high glycemic load, and high glycemic index diet. Wine and whole-grained bread may decrease the risk of gallstones.
Rapid weight loss increases risk of gallstones. Patients taking orlistat, a weight loss drug, may already be at increased risk for the formation of gallstones. Weight loss with orlistat can increase the risk of gallstones. On the contrary, ursodeoxycholic acid (UDCA), a bile acid, also a drug marketed as Ursodiol, appears to prevent formation of gallstones during weight loss. A high fat diet during weight loss also appears to prevent gallstones.
Cholecystokinin deficiency caused by celiac disease increases risk of gallstone formation, especially when diagnosis of celiac disease is delayed.
Pigment gallstones are most commonly seen in the developing world. Risk factors for pigment stones include hemolytic anemias (such as from sickle-cell disease and hereditary spherocytosis), cirrhosis, and biliary tract infections. People with erythropoietic protoporphyria (EPP) are at increased risk to develop gallstones. Additionally, prolonged use of proton pump inhibitors has been shown to decrease gallbladder function, potentially leading to gallstone formation.
Cholesterol modifying medications can affect gallstone formation. Statins inhibit cholesterol synthesis and there is evidence that their use may decrease the risk of getting gallstones. Fibrates increase cholesterol concentration in bile and their use has been associated with an increased risk of gallstones.
Some individuals may benefit from diet modification, such as a reduced fat diet, following cholecystectomy. The liver produces bile and the gallbladder acts as reservoir. From the gallbladder, bile enters the intestine in individual portions. In the absence of gallbladder, bile enters the intestine constantly, but in small quantities. Thus, it may be insufficient for digestion of fatty foods. Postcholecystectomy syndrome treatment depends on the identified violations that led to it. Typically, the patient is recommended dietary restriction table with fatty foods, enzyme preparations, antispasmodics, sometimes cholagogue.
If the pain is caused by biliary microlithiasis, oral ursodeoxycholic acid can alleviate the condition.
A trial of bile acid sequestrant therapy is recommended for bile acid diarrhoea.
Biliary pain is most frequently caused by obstruction of the common bile duct or the cystic duct by a gallstone. However, the presence of gallstones is a frequent incidental finding and does not always necessitate treatment, in the absence of identifiable disease. Furthermore, biliary pain may be associated with functional disorders of the biliary tract, so called acalculous biliary pain (pain without stones), and can even be found in patients post-cholecystectomy (removal of the gallbladder), possibly as a consequence of dysfunction of the biliary tree and the sphincter of Oddi. Acute episodes of biliary pain may be induced or exacerbated by certain foods, most commonly those high in fat.
Postcholecystectomy syndrome describes the presence of abdominal symptoms after surgical removal of the gallbladder (cholecystectomy), 2 years after the surgery.
Symptoms of postcholecystectomy syndrome may include:
- Dyspepsia, nausea, and vomiting.
- Flatulence, bloating, and diarrhea.
- Persistent pain in the upper right abdomen.
Symptoms occur in about 5 to 40 percent of patients who undergo cholecystectomy, and can be transient, persistent or lifelong. The chronic condition is diagnosed in approximately 10% of postcholecystectomy cases.
The pain associated with postcholecystectomy syndrome is usually ascribed to either sphincter of Oddi dysfunction or to post-surgical adhesions. A recent study shows that postcholecystectomy syndrome can be caused by biliary microlithiasis.
Approximately 50% of cases are due to biliary causes such as remaining stone, biliary injury, dysmotility, and choledococyst. The remaining 50% are due to non-biliary causes. This is because upper abdominal pain and gallstones are both common but are not always related.
Chronic diarrhea in postcholecystectomy syndrome is a type of bile acid diarrhea (type 3). This can be treated with a bile acid sequestrant like cholestyramine, colestipol or colesevelam, which may be better tolerated.
Rarely, in cases of severe inflammation, gallstones may erode through the gallbladder into adherent bowel potentially causing an obstruction termed gallstone ileus.
Other complications include ascending cholangitis if there is a bacterial infection which can cause purulent inflammation in the biliary tree and liver, and acute pancreatitis as blockage of the bile ducts can prevent active enzymes being secreted into the bowel, instead damaging the pancreas.
Sphincter of Oddi dysfunction refers to a group of functional disorders leading to abdominal pain due to dysfunction of the Sphincter of Oddi: functional biliary sphincter of Oddi and functional pancreatic sphincter of Oddi disorder. The sphincter of Oddi is a sphincter muscle, a circular band of muscle at the bottom of the biliary tree which controls the flow of pancreatic juices and bile into the second part of the duodenum. The pathogenesis of this condition is recognized to encompass stenosis or dyskinesia of the sphincter of Oddi (especially after cholecystectomy); consequently the terms biliary dyskinesia, papillary stenosis, and postcholecystectomy syndrome have all been used to describe this condition. Both stenosis and dyskinesia can obstruct flow through the sphincter of Oddi and can therefore cause retention of bile in the biliary tree and pancreatic juice in the pancreatic duct.
Individuals with sphincter of Oddi dysfunction present with abdominal pain resembling that of structural or inflammatory disorders of the gallbladder, biliary tree or pancreas. Among other characteristics, the pain is typically in the upper part of the abdomen or in the right upper quadrant of the abdomen, lasts 30 minutes or longer, and is not associated with a structural abnormality that could lead to these symptoms. The disorder is classified into two subtypes: functional biliary sphincter of Oddi disorder, where there is no disturbance in pancreatic enzyme measurements, such as amylase and lipase; and, functional pancreatic sphincter of Oddi disorder, where pancreatic enzyme measurements are elevated.
Attacks can be precipitated by opioid analgesics, particularly in patients having undergone cholecystectomy (gall bladder removal) or who have had bariatric surgery (Gastric Bypass or weight loss surgery).
Biliary microlithiasis refers to the creation of small gallstones less than 3mm in diameter in the biliary duct or gallbladder.
It has been suggested as a cause of postcholecystectomy syndrome, or PCS, the symptoms of which include:
- Upset stomach, nausea, and vomiting.
- Gas, bloating, and diarrhea.
- Persistent pain in the upper right abdomen.
Sphincter of Oddi dysfunction may be suggested by pain which seems to come from a biliary origin, which may or may not be associated with transient increases of liver or pancreatic enzymes. Common bile duct dilation and episodes of pancreatitis are also signs.
There is considerable research into the causes, diagnosis and treatments for FGIDs. Diet, microbiome, genetics, neuromuscular function and immunological response all interact. Heightened mast cell activation has been proposed to be a common factor among FGIDs, contributing to visceral hypersensitivity as well as epithelial, neuromuscular, and motility dysfunction.
Functional gastrointestinal disorders are very common. Globally, irritable bowel syndrome and functional dyspepsia alone may affect 16–26% of the population.
Muir–Torre was observed to occur in 14 of 50 families (28%) and in 14 of 152 individuals (9.2%) with Lynch syndrome, also known as HNPCC.
The 2 major MMR proteins involved are hMLH1 and hMSH2. Approximately 70% of tumors associated with the MTS have microsatellite instability. While germline disruption of hMLH1 and hMSH2 is evenly distributed in HNPCC, disruption of hMSH2 is seen in greater than 90% of MTS patients.
Gastrointestinal and genitourinary cancers are the most common internal malignancies. Colorectal cancer is the most common visceral neoplasm in Muir–Torre syndrome patients.
Muir–Torre syndrome is characterized by both:
1. At least a single sebaceous gland tumor (either an adenoma, an epithelioma, or a carcinoma)
2. A minimum of one internal malignancy
The Amsterdam criteria are frequently used to diagnose Lynch syndrome and Muir–Torre syndrome. They include the following:
- 3 or more relatives with an HNPCC-associated cancer (i.e., colorectal, cancer of the endometrium, small bowel, ureter, or renal pelvis)
- 2 or more successive generations affected by cancer
- 1 or more persons with cancer is a first-degree relative of the other 2, at least 1 case of colorectal cancer younger than age 50 years, a diagnosis of familial adenomatous polyposis has been excluded, tumors are verified by histologic examination
Muir–Torre syndrome is a genetic condition. Mutations in MLH1 and MSH2 are linked with the disease. These genes code for DNA mismatch repair genes, and mutations increase the risk of developing cancerous qualities.
Many patients who have sebaceous neoplasms with mutations in MSH2 and MLH1 do not in fact have Muir–Torre syndrome. The Mayo Muir–Torre risk score was devised to improve the positive predictive value of immunohistochemistry and reduce the false positive rate.
The Mayo Muir–Torre Risk score assigns points based several characteristics. A score of 2 or greater has a high positive predictive value of Muir–Torre syndrome. A score of 1 or lower is less likely to be Muir–Torre syndrome.
Age of onset of first sebaceous neoplasm: <60 years = 1 point, otherwise 0 points
Total number of sebaceous neoplasms: 1 = 0 points, >2 = 2 points.
Personal history of Lynch related cancers: No = 0 points, Yes = 1 point
Family history of Lynch-related cancer: No = 0 points, Yes = 1 point
The most common internal malignancies associated with Muir–Torre syndrome are: Colorectal (56%), Urogenital (22%), Small Intestine (4%), and Breast (4%). A variety of other internal malignancies have been reported.
Rotor syndrome, also called Rotor type hyperbilirubinemia, is a rare, relatively benign autosomal recessive bilirubin disorder. It is a distinct, yet similar disorder to Dubin–Johnson syndrome — both diseases cause an increase in conjugated bilirubin.
Reye syndrome occurs almost exclusively in children. While a few adult cases have been reported over the years, these cases do not typically show permanent neural or liver damage. Unlike in the UK, the surveillance for Reye syndrome in the US is focused on patients under 18 years of age.
In 1980, after the CDC began cautioning physicians and parents about the association between Reye syndrome and the use of salicylates in children with chickenpox or virus-like illnesses, the incidence of Reye syndrome in the United States began to decline. However, the decline began prior to the FDA's issue of warning labels on aspirin in 1986. In the United States between 1980 and 1997, the number of reported cases of Reye syndrome decreased from 555 cases in 1980 to about 2 cases per year since 1994. During this time period 93% of reported cases for which racial data were available occurred in whites and the median age was six years. In 93% of cases a viral illness had occurred in the preceding three-week period. For the period 1991-1994, the annual rate of hospitalizations due to Reye syndrome in the US was estimated to be between 0.2 and 1.1 per million population less than 18 years of age.
During the 1980s, a case-control study carried out in the United Kingdom also demonstrated an association between Reye syndrome and aspirin exposure. In June 1986, the United Kingdom Committee on Safety of Medicines issued warnings against the use of aspirin in children under 12 years of age and warning labels on aspirin-containing medications were introduced. UK surveillance for Reye syndrome documented a decline in the incidence of the illness after 1986. The reported incidence rate of Reye syndrome decreased from a high of 0.63 per 100,000 population less than 12 years of age in 1983/84 to 0.11 in 1990/91.
From November 1995 to November 1996 in France, a national survey of pediatric departments for children under 15 years of age with unexplained encephalopathy and a threefold (or greater) increase in serum aminotransferase and/or ammonia led to the identification of nine definite cases of Reye syndrome (0.79 cases per million children). Eight of the nine children with Reye syndrome were found to have been exposed to aspirin. In part because of this survey result, the French Medicines Agency reinforced the international attention to the relationship between aspirin and Reye syndrome by issuing its own public and professional warnings about this relationship.
Rotor syndrome has many features in common with Dubin–Johnson syndrome, an exception being that the liver cells are not pigmented. The main symptom is a non-itching jaundice. There is a rise in bilirubin in the patient's serum, mainly of the conjugated type.
It can be differentiated from Dubin–Johnson syndrome in the following ways:
It has been suggested that Rotor Syndrome may exacerbate toxic side effects of the drug irinotecan.
In the United States, sarcoidosis has a prevalence of approximately 10 cases per 100,000 whites and 36 cases per 100,000 blacks. Heerfordt syndrome is present in 4.1–5.6% of those with sarcoidosis.
Documented cases of Reye syndrome in adults are rare. The recovery of adults with the syndrome is generally complete, with liver and brain function returning to normal within two weeks of onset. In children, however, mild to severe permanent brain damage is possible, especially in infants. Over thirty percent of the cases reported in the United States from 1981 through 1997 resulted in fatality.
Respiratory complications are often cause of death in early infancy.
Roberts syndrome is an extremely rare condition that only affects about 150 reported individuals. Although there have been only about 150 reported cases, the affected group is quite diverse and spread worldwide. Parental consanguinity (parents are closely related) is common with this genetic disorder. The frequency of Roberts syndrome carriers is unknown.
Pearson Syndrome is a very rare mitochondrial disorder that is characterized by health conditions such as sideroblastic anemia, liver disease, and exocrine pancreas deficiency.
Pearson syndrome is a mitochondrial disease characterized by sideroblastic anemia and exocrine pancreas dysfunction. Other clinical features are failure to thrive, pancreatic fibrosis with insulin-dependent diabetes and exocrine pancreatic deficiency, muscle and neurologic impairment, and, frequently, early death. It is usually fatal in infancy. The few patients who survive into adulthood often develop symptoms of Kearns-Sayre syndrome.
It is caused by a deletion in mitochondrial DNA. Pearson syndrome is very rare, less than hundred cases have been reported in medical literature worldwide.
The syndrome was first described by pediatric hematologist and oncologist Howard Pearson in 1979; the deletions causing it were discovered a decade later.
Various strategies have been proposed to prevent the development of metabolic syndrome. These include increased physical activity (such as walking 30 minutes every day), and a healthy, reduced calorie diet. Many studies support the value of a healthy lifestyle as above. However, one study stated these potentially beneficial measures are effective in only a minority of people, primarily due to a lack of compliance with lifestyle and diet changes. The International Obesity Taskforce states that interventions on a sociopolitical level are required to reduce development of the metabolic syndrome in populations.
The Caerphilly Heart Disease Study followed 2,375 male subjects over 20 years and suggested the daily intake of a pint (~568 ml) of milk or equivalent dairy products more than halved the risk of metabolic syndrome. Some subsequent studies support the authors' findings, while others dispute them. A systematic review of four randomized controlled trials found that a paleolithic nutritional pattern improved three of five measurable components of the metabolic syndrome in participants with at least one of the components.
After the first discovery and description of Marshall–Smith syndrome in 1971, research to this rare syndrome has been carried out.
- Adam, M., Hennekam, R.C.M., Butler, M.G., Raf, M., Keppen, L., Bull, M., Clericuzio, C., Burke, L., Guttacher, A., Ormond, K., & Hoyme, H.E. (2002). Marshall–Smith syndrome: An osteochondrodysplasia with connective tissue abnormalities. 23rd Annual David W. Smith Workshop on Malformations and Morphogenesis, August 7, Clemson, SC.
- Adam MP, Hennekam RC, Keppen LD, Bull MJ, Clericuzio CL, Burke LW, Guttmacher AE, Ormond KE and Hoyme HE: Marshall-Smith Syndrome: Natural history and evidence of an osteochondrodysplasia with connective tissue abnormalities. American Journal of Medical Genetics 137A:117–124, 2005.
- Baldellou Vazquez A, Ruiz-Echarri Zelaya MP, Loris Pablo C, Ferr#{225}ndez Longas A, Tamparillas Salvador M. El sIndrome de Marshall-Smith: a prop#{243}sito de una observad#{243}n personal. An Esp Pediatr 1983; 18:45-50.
- Butler, M.G. (2003). Marshall–Smith syndrome. In: The NORD Guide to Rare Disorders. (pp219–220) Lippincott, Williams & Wilkins, Philadelphia, PA.
- Charon A, Gillerot T, Van Maldergem L, Van Schaftingen MH, de Bont B, Koulischer L. The Marshall–Smith syndrome. Eur J Pediatr 1990; 150: 54-5.
- Dernedde, G., Pendeville, P., Veyckemans, F., Verellen, G. & Gillerot, Y. (1998). Anaesthetic management of a child with Marshall–Smith syndrome. Canadian Journal of Anesthesia. 45 (7): 660. Anaesthetic management of a child with Marshall-Smith syndrome
- Diab, M., Raff, M., Gunther, D.F. (2002). Osseous fragility in Marshall–Smith syndrome. Clinical Report: Osseous fragility in Marshall-Smith syndrome
- Ehresmann, T., Gillessen-Kaesbach G., Koenig R. (2005). Late diagnosis of Marshall Smith Syndrome (MSS). In: Medgen 17.
- Hassan M, Sutton T, Mage K, LimalJM, Rappaport R. The syndrome of accelerated bone maturation in the newborn infant with dysmorphism and congenital malformations: (the so-called Marshall–Smith syndrome). Pediatr Radiol 1976; 5:53-57.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. Western Society for Pediatric Research, Carmel, California, February, 1987. Clin Res 35:68A, 1987.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. David W. Smith Morphogenesis and Malformations Workshop. Greenville, SC, August, 1987. Proceedings of the Greenwood Genetics Center 7:152, 1988.
- Hoyme HE, Byers PH, Guttmacher AE: Marshall–Smith syndrome: Further evidence of an osteochondrodysplasia in long-term survivors. David W. Smith Morphogenesis and Malformations Workshop, Winston-Salem, NC, August, 1992. Proceedings of the Greenwood Genetic Center 12:70, 1993.
- .
- Tzu-Jou Wang (2002). Marshall–Smith syndrome in a Taiwanese patient with T-cell immunodeficiency. Am J Med Genet Part A;112 (1):107-108.
In terms of treatment/management one should observe what signs or symptoms are present and therefore treat those as there is no other current guideline. The affected individual should be monitored for cancer of:
- Thyroid
- Breast
- Renal