Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Links between maternal smoking and TDS are tenuous, but there are stronger associations between maternal alcohol consumption and incidences of cryptorchidism in sons. Smoking does however affect the growth of a fetus, and low birth weight is shown to increase the likelihood of all the disorders encompassed by TDS. Maternal obesity, resulting in gestational diabetes, has also been shown to be a risk factor for impaired testes development and TDS symptoms in sons.
There is increasing evidence that the harmful products of tobacco smoking may damage the testicles and kill sperm, but their effect on male fertility is not clear. Some governments require manufacturers to put warnings on packets. Smoking tobacco increases intake of cadmium, because the tobacco plant absorbs the metal. Cadmium, being chemically similar to zinc, may replace zinc in the DNA polymerase, which plays a critical role in sperm production. Zinc replaced by cadmium in DNA polymerase can be particularly damaging to the testes.
Pre-testicular factors refer to conditions that impede adequate support of the testes and include situations of poor hormonal support and poor general health including:
- Hypogonadotropic hypogonadism due to various causes
- Obesity increases the risk of hypogonadotropic hypogonadism. Animal models indicate that obesity causes leptin insensitivity in the hypothalamus, leading to decreased Kiss1 expression, which, in turn, alters the release of gonadotropin-releasing hormone (GnRH).
- Undiagnosed and untreated coeliac disease (CD). Coeliac men may have reversible infertility. Nevertheless, CD can present with several non-gastrointestinal symptoms that can involve nearly any organ system, even in the absence of gastrointestinal symptoms. Thus, the diagnosis may be missed, leading to a risk of long-term complications. In men, CD can reduce semen quality and cause immature secondary sex characteristics, hypogonadism and hyperprolactinaemia, which causes impotence and loss of libido. The giving of gluten free diet and correction of deficient dietary elements can lead to a return of fertility. It is likely that an effective evaluation for infertility would best include assessment for underlying celiac disease, both in men and women.
- Drugs, alcohol
- Strenuous riding (bicycle riding, horseback riding)
- Medications, including those that affect spermatogenesis such as chemotherapy, anabolic steroids, cimetidine, spironolactone; those that decrease FSH levels such as phenytoin; those that decrease sperm motility such as sulfasalazine and nitrofurantoin
- Genetic abnormalities such as a Robertsonian translocation
Exposure of a male fetus to substances that disrupt hormone systems, particularly chemicals that inhibit the action of androgens (male sex hormones) during the development of the reproductive system, has been shown to cause many of the characteristic TDS disorders. These include environmental estrogens and anti-androgens found in food and water sources that have been contaminated with synthetic hormones and pesticides used in agriculture. In historical cases, medicines given to pregnant women, like diethylstilbestrol (DES), have caused many of the features of TDS in fetuses exposed to this chemical during gestation. The impact of environmental chemicals is well documented in animal models. If a substance affects Sertoli and Leydig cell differentiation (a common feature of TDS disorders) at an early developmental stage, germ cell growth and testosterone production will be impaired. These processes are essential for testes descent and genitalia development, meaning that genital abnormalities like cryptorchidism or hypospadias may be present from birth, and fertility problems and TGCC become apparent during adult life. Severity or number of disorders may therefore be dependent on the timing of the environmental exposure. Environmental factors can act directly, or via epigenetic mechanisms, and it is likely that a genetic susceptibility augmented by environmental factors is the primary cause of TDS.
The human breast cancer susceptibility gene 2 (BRCA2) is employed in homologous recombinational repair of DNA damages during meiosis. A common single-nucleotide polymorphism of BRCA2 is associated with severe oligospermia.
Men with mild oligospermia (semen concentration of 15 million to 20 million sperm/ml) were studied for an association of sperm DNA damage with life style factors. A significant association was found between sperm DNA damage and factors such as age, obesity and occupational stress.
In about 30% of infertile men no causative factor is found for their decrease in sperm concentration or quality by common clinical, instrumental, or laboratory means, and the condition is termed "idiopathic" (unexplained). A number of factors may be involved in the genesis of this condition, including age, infectious agents ( such as "Chlamydia trachomatis"), Y chromosome microdeletions, mitochondrial changes, environmental pollutants, and "subtle" hormonal changes.
A review in 2013 came to the result that oligospermia and azoospermia are significantly associated with being overweight (odds ratio 1.1), obese (odds ratio 1.3) and morbidly obese (odds ratio 2.0), but the cause of this is unknown. It found no significant relation between oligospermia and being underweight.
Idiopathic azoospermia is where there is no known cause of the condition. It may be a result of multiple risk factors, such as age and weight. For example, a review in 2013 came to the result that oligospermia and azoospermia are significantly associated with being overweight (odds ratio 1.1), obese (odds ratio 1.3) and morbidly obese (odds ratio 2.0), but the cause of this is unknown. The review found no significant relation between oligospermia and being underweight.
It is a rare condition, with only approximately 60 cases reported as of 1989, and 75 cases as of 2005. However, due to the stigma of intersex conditions and the issues of keeping accurate statistics and records among doctors, it is likely there are more cases than reported.
It is also known that disruption of the endocrine system by certain chemicals adversely affects the development of the reproductive system and can cause vaginal cancer. Many other reproductive diseases have also been link to exposure to synthetic and environmental chemicals. Common chemicals with known links to reproductive disorders include: lead, dioxins and dioxin-like compounds, styrene, toluene, BPA (Bisphenol A) and pesticides.
Examples of congenital abnormalities of the reproductive system include:
- Kallmann syndrome - Genetic disorder causing decreased functioning of the sex hormone-producing glands caused by a deficiency or both testes from the scrotum.
- Androgen insensitivity syndrome - A genetic disorder causing people who are genetically male (i.e. XY chromosome pair) to develop sexually as a female due to an inability to utilize androgen.
- Intersexuality - A person who has genitalia and/or other sexual traits which are not clearly male or female.
Individuals with CAVD can reproduce with the assistance of modern technology with a combination of testicular sperm extraction and intracytoplasmic sperm injection (ICSI). However, as the risk of either cystic fibrosis or renal agenesis is likely to be higher in the children, genetic counseling is generally recommended.
In posttesticular azoospermia sperm are produced but not ejaculated, a condition that affects 7–51% of azoospermic men. The main cause is a physical obstruction (obstructive azoospermia) of the posttesticular genital tracts. The most common reason is a vasectomy done to induce contraceptive sterility. Other obstructions can be congenital (example agenesis of the vas deferens as seen in certain cases of cystic fibrosis) or acquired, such as ejaculatory duct obstruction for instance by infection.
Ejaculatory disorders include retrograde ejaculation and anejaculation; in these conditions sperm are produced but not expelled.
Approximately 1 in 20,000 individuals with a male appearance have 46,XX testicular disorder.
There are two main populations of CAVD; the larger group is associated with
cystic fibrosis and occurs because of a mutation in the CFTR gene, while the smaller group (estimated between 10 and 40%) is associated with Unilateral Renal agenesis (URA). The genetic basis of this second group is not well understood.
Mutation of the CFTR gene is found to result in obstructive azoospermia in postpubertal males with cystic fibrosis. Strikingly, CAVD is one of the most consistent features of cystic fibrosis as it affects 98-99% of individuals in this CF patient population. In contrast, acute or persistent respiratory symptoms present in only 51% of total CF patients.
In the subset of males with both CBAVD and URA, the CFTR mutation has been shown to occur at a rate only slightly higher than the overall population. Thus, McCallum, et al. have suggested another mutation may be responsible for this condition.
In an embryo, the conversion of the gonads into testicles in males-to-be and into ovaries in females-to-be is the function of Leydig cells. In testicular agenesis, this process fails. Penile agenesis can be caused by testicular agenesis. Testes are the sole producer of 5-alpha dihydrotestosterone (5aDHT) in the male body. Where the gonads fail to metamorphose into testes, there is no 5aDHT. Therefore, the masculising process that builds the genital tubercle, the precursor to the penis, is stillborn. When this happens, the child is born with both penile and testicular agenesis and is known by the slang term "nullo". This combination of both conditions is estimated to occur in between 20-30 million male births.
Penile agenesis can exist independently after full testicular development; in this case its cause is unknown.
Most cases of polyorchidism are asymptomatic, and are discovered incidentally, in the course of treating another condition. In the majority of cases, the supernumerary testicle is found in the scrotum.
However, polyorchidism can occur in conjunction with cryptorchidism, where the supernumerary testicle is undescended or found elsewhere in the body. These cases are associated with a significant increase in the incidence of testicular cancer: 0.004% for the general population vs 5.7% for a supernumerary testicle not found in the scrotum.
Polyorchidism can also occur in conjunction with infertility, inguinal hernia, testicular torsion, epididymitis, hydrocele testis and varicocele. However, it is not clear whether polyorchidism causes or aggravates these conditions, or whether the existence of these conditions leads sufferers to seek medical attention and thus become diagnosed with a previously undetected supernumerary testicle.
A problem for people with penile agenesis is the absence of a urinary outlet. Before genital metamorphosis, the urethra runs down the anal wall, to be pulled away by the genital tubercle during male development. Without male development this does not occur. The urethra can be surgically redirected to the rim of the anus immediately after birth to enable urination and avoid consequent internal irritation from urea concentrate. In such cases, the perineum may be left devoid of any genitalia, male or female.
A working penis transplant on to an agenetic patient has never been successful. Only one major penis graft was successfully completed. This occurred in China and the patient shortly rejected it on psychological grounds. However a full female or agenetic to male transplant is not yet facilitated to fulfil full reproductive functions.
On March 18, 2013, it was announced that Andrew Wardle, a British man born without a penis, was going to receive a pioneering surgery to create a penis for him. The surgeons hope to "fold a large flap of skin from his arm — complete with its blood vessels and nerves — into a tube to graft onto his pubic area." If the surgery goes well, the odds of starting a family are very good.
In about 80 percent of individuals with 46,XX testicular disorder of sex development, the condition results from an abnormal exchange of genetic material between chromosomes (translocation). This exchange occurs as a random event during the formation of sperm cells in the affected person's father. The translocation causes the SRY gene to be misplaced, almost always onto an X chromosome. If a fetus is conceived from a sperm cell with an X chromosome bearing the SRY gene, it will develop as a male despite not having a Y chromosome. This form of the condition is called SRY-positive 46,XX testicular disorder of sex development.
About 20 percent of those with 46 XX testicular disorder of sex development do not have the SRY gene. This form of the condition is called SRY-negative 46,XX testicular disorder of sex development. The cause of the disorder in these individuals is often unknown, although changes affecting other genes have been identified. Individuals with SRY-negative 46,XX testicular disorder of sex development are more likely to have ambiguous genitalia than are people with the SRY-positive form.
PMDS type I results from mutations of the gene ("AMH") for AMH on chromosome 19p3.3.
PMDS type II results from mutations of the gene ("AMH-RII") for the AMH receptor on 12q13.
Both types of disorders are inherited as autosomal recessive conditions with expression usually limited to XY offspring.
Nuclear receptor subfamily 5 group A member 1 (NR5A1), also known as SF1 or Ad4BP (MIM 184757), is located on the long arm of chromosome 9 (9q33.3). The NR5A1 is an orphan nuclear receptor that was first identified following the search for a common regulator of the cytochrome P450 steroid hydroxylase enzyme family. This receptor is a pivotal transcriptional regulator of an array of genes involved in reproduction, steroidogenesis and male sexual differentiation and also plays a crucial role in adrenal gland formation in both sexes. NR5A1 regulates the mullerian inhibitory substance by binding to a conserved upstream regulatory element and directly participates in the process of mammalian sex determination through mullerian duct regression. Targeted disruption of NR5A1 (Ftzf1) in mice results in gonadal and adrenal agenesis, persistence of Mullerian structures and abnormalities of the hypothalamus and pituitary gonadotropes. Heterozygous animals demonstrate a milder phenotype including an impaired adrenal stress response and reduced testicular size. In humans, NR5A1 mutations were first described in patients with 46, XY karyotype and disorders of sex development (DSD), Mullerian structures and primary adrenal failure (MIM 612965). After that, heterozygous NR5A1 mutations were described in seven patients showing 46, XY karyotype and ambiguous genitalia, gonadal dysgenesis, but no adrenal insufficiency. Since then, studies have confirmed that mutations in NR5A1 in patients with 46, XY karyotype cause severe underandrogenisation, but no adrenal insufficiency, establishing dynamic and dosage-dependent actions for NR5A1. Subsequent studies revealed that NR5A1 heterozygous mutations cause primary ovarian insufficiency (MIM 612964).
Because polyorchidism is very uncommon, there is no standard treatment for the condition. Prior to advances in ultrasound technology, it was common practice to remove the supernumerary testicle. Several cases have been described where routine follow-up examinations conducted over a period of years showed that the supernumerary testicle was stable.
A meta-analysis in 2009 suggested removing non-scrotal supernumerary testicles because of the increased risk of cancer, and regular follow-up in the remaining cases to ensure that the supernumerary testicle remains stable.
Because both the Wolffian ducts and Müllerian ducts begin to develop, the tissues are often intertwined, resulting in obstruction or nonpatency of the vas deferens or other parts of the reproductive excretory ducts. This can result in infertility, the most serious potential problem caused by this condition. Sometimes, transverse testicular ectopia is evident.
Cryptorchidism in AMH deficiency suggests that AMH may play a role in transabdominal testicular descent, perhaps by facilitating contraction of the gubernaculum.
Other Müllerian derivatives which may be present in at least a rudimentary form are the cervix, upper part of the vagina, and fallopian tubes.
The condition can come to attention because of a bulge in the inguinal canal of an XY infant due to herniation of the uterus. The presence of a uterus may be noticed if an ultrasound or MRI of the pelvis is performed to locate the testes or for other reasons. Occasionally the uterus is discovered during abdominal surgery for some other purpose in later childhood or adult life.
Although persistent Müllerian duct syndrome is classified as an intersex condition, it does not involve ambiguity or malformation of the external genitalia, which appear typical (apart from cryptorchidism if present). Sometimes the uterus enters a hernia. Sometimes the Müllerian structures get entangled with the spermatic ducts and interfere with the descent of the testes.
Apart from humans, this syndrome has been reported in dogs.
In most full-term infant boys with cryptorchidism but no other genital abnormalities, a cause cannot be found, making this a common, sporadic, unexplained (idiopathic) birth defect. A combination of genetics, maternal health, and other environmental factors may disrupt the hormones and physical changes that influence the development of the testicles.
- Severely premature infants can be born before descent of testes. Low birth weight is also a known factor.
- A contributing role of environmental chemicals called endocrine disruptors that interfere with normal fetal hormone balance has been proposed. The Mayo Clinic lists "parents' exposure to some pesticides" as a known risk factor.
- Diabetes and obesity in the mother.
- Risk factors may include exposure to regular alcohol consumption during pregnancy (5 or more drinks per week, associated with a 3x increase in cryptorchidism, when compared to non-drinking mothers. Cigarette smoking is also a known risk factor.
- Family history of undescended testicle or other problems of genital development.
- Cryptorchidism occurs at a much higher rate in a large number of congenital malformation syndromes. Among the more common are Down syndrome Prader–Willi syndrome, and Noonan syndrome.
- In vitro fertilization, use of cosmetics by the mother, and preeclampsia have also been recognized as risk factors for development of cryptorchidism.
In 2008 a study was published that investigated the possible relationship between cryptorchidism and prenatal exposure to a chemical called phthalate (DEHP) which is used in the manufacture of plastics. The researchers found a significant association between higher levels of DEHP metabolites in the pregnant mothers and several sex-related changes, including incomplete descent of the testes in their sons. According to the lead author of the study, a national survey found that 25% of U.S. women had phthalate levels similar to the levels that were found to be associated with sexual abnormalities.
A 2010 study published in the European medical journal "Human Reproduction" examined the prevalence of congenital cryptorchidism among offspring whose mothers had taken mild analgesics, primarily over-the-counter pain medications including ibuprofen (e.g. Advil) and paracetamol (acetaminophen). Combining the results from a survey of pregnant women prior to their due date in correlation with the health of their children and an "ex vivo" rat model, the study found that pregnant women who had been exposed to mild analgesics had a higher prevalence of baby boys born with congenital cryptorchidism.
New insight into the testicular descent mechanism has been hypothesized by the concept of a male programming window (MPW) derived from animal studies. According to this concept, testicular descent status is "set" during the period from 8 to 14 weeks of gestation in humans. Undescended testis is a result of disruption in androgen levels only during this programming window.
Aphallia has no known cause. It is not linked to deficient hormone amounts or action, but rather to a failure of the fetal genital tubercle to form between 3 and 6 weeks after conception. The urethra of an affected child opens on the perineum.
Sex determination and differentiation is generalized with chromosomal sex during fertilization. At early stages, phenotypic sex does not match chromosomal sex—until later during intrauterine development, sexual maturation is reached. During intrauterine development, females change to male with the testes moving down from a blind vaginal pouch with a developing scrotum, as well as a penis which initially resembled a clitoris. What seems like a female phenotype is altered by increased testosterone levels secretion.
Mutations affecting the androgen receptor (AR) gene may cause either complete or partial androgen insensitivity syndrome. Androgen, a hormone used to describe a group of sex steroid hormones, is responsible for affecting male pseudohermaphroditism. The differentiation of the fetus as male takes place during the sixth or seventh week of gestation. The development is directed by the testicular determining factor: the gene SRY (sex determining region on Y chromosome). Throughout 9th to 13th week, the development of a male genitalia is dependent upon the conversion of testosterone to the more potent androgen by the action of 5α-reductase within the target tissues of the genitalia. A type of internal male pseudohermaphroditism is Persistent Müllerian duct syndrome, which is developed through synthesis of Müllerian-inhibiting factor defects. In such instances, duct derivatives are now in 46XY males—this includes the uterus, fallopian tubes, and upper vagina. These individuals with a hernia sac and bowel loops were found with duct derivatives as well as testes.
A study on a male pseudohermaphrodite kitten showed there was a combination of gastrointestinal and urogenital congenital abnormalities. It was confirmed to have type II atresia ani and rectovaginal fistula that is associated with male pseudohermaphroditism.