Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Some over-the-counter as well as prescription drugs and certain industrial chemicals are ototoxic. Exposure to
these can result in temporary or permanent hearing loss.
Some medications cause irreversible damage to the ear, and are limited in their use for this reason. The most important group is the aminoglycosides (main member gentamicin). A rare mitochondrial mutation, m.1555A>G, can increase an individual's susceptibility to the ototoxic effect of aminoglycosides. Long term hydrocodone (Vicodin) abuse is known to cause rapidly progressing sensorineural hearing loss, usually without vestibular symptoms. Methotrexate, a chemotherapy agent, is also known to cause hearing loss. In most cases hearing loss does not recover when the drug is stopped. Paradoxically, methotrexate is also used in the treatment of autoimmune-induced inflammatory hearing loss.
Various other medications may reversibly degrade hearing. This includes loop diuretics, sildenafil (Viagra), high or sustained dosing of NSAIDs (aspirin, ibuprofen, naproxen, and various prescription drugs: celecoxib, etc.), quinine, and macrolide antibiotics (erythromycin, etc.).
Prolonged or repeated environmental or work-related exposure to ototoxic chemicals can also result in sensorineural hearing loss. Some of these chemicals are:
- butyl nitrite - chemical used recreationally known as 'poppers'
- carbon disulfide - a solvent used as a building block in many organic reactions
- styrene, an industrial chemical precursor of polystyrene, a plastic
- carbon monoxide, a poisonous gas resulting from incomplete combustion
- heavy metals: tin, lead, manganese, mercury
- hexane, an industrial solvent and one of the significant constituents of gasoline
- ethylbenzene, an industrial solvent used in the production of styrene
- toluene and xylene, highly poisonous petrochemical solvents. Toluene is a component of high-octane gasolne; xylene is used in the production of polyester fibers and resins.
- trichloroethylene, an industrial degreasing solvent
- Organophosphate pesticides
In addition to medications, hearing loss can also result from specific chemicals: metals, such as lead; solvents, such as toluene (found in crude oil, gasoline and automobile exhaust, for example); and asphyxiants. Combined with noise, these ototoxic chemicals have an additive effect on a person’s hearing loss.
Hearing loss due to chemicals starts in the high frequency range and is irreversible. It damages the cochlea with lesions and degrades central portions of the auditory system. For some ototoxic chemical exposures, particularly styrene, the risk of hearing loss can be higher than being exposed to noise alone.
- Solvents
- toluene, styrene, xylene, "n"-hexane, ethyl benzene, white spirits/Stoddard, carbon disulfide, jet fuel, perchloroethylene, trichloroethylene, "p"-xylene
- Asphyxiants
- carbon monoxide, hydrogen cyanide
- Heavy metals
- lead, mercury, cadmium, arsenic, tin-hydrocarbon compounds (trimethyltin)
- Pesticides and herbicides - The evidence is weak regarding association between herbicides and hearing loss; hearing loss in such circumstances may be due to concommitant exposure to insecticides.
- paraquat, organophosphates
These are much more common in premature babies, particularly those under 1500 g at birth. Premature birth can be associated with problems that result in sensorineural hearing loss such as anoxia or hypoxia(poor oxygen levels), jaundice, intracranial haemorrhages, meningitis. Fetal alcohol syndrome is reported to cause hearing loss in up to 64% of infants born to alcoholic mothers, from the ototoxic effect on the developing fetus, plus malnutrition during pregnancy from the excess alcohol intake.
There is a progressive loss of ability to hear high frequencies with aging known as presbycusis. For men, this can start as early as 25 and women at 30. Although genetically variable it is a normal concomitant of ageing and is distinct from hearing losses caused by noise exposure, toxins or disease agents. Common conditions that can increase the risk of hearing loss in elderly people are high blood pressure, diabetes or the use of certain medications harmful to the ear. While everyone loses hearing with age, the amount and type of hearing loss is variable.
In cases where the causes are environmental, the treatment is to eliminate or reduce these causes first of all, and then to fit patients with a hearing aid, especially if they are elderly. When the loss is due to heredity, total deafness is often the end result. On the one hand, persons who experience gradual deterioration of their hearing are fortunate in that they have learned to speak. Ultimately the affected person may bridge communication problems by becoming skilled in sign language, speech-reading, using a hearing aid, or accepting elective surgery to use a prosthetic devices such as a cochlear implant.
In some cases, the loss is extremely sudden and can be traced to specific diseases, such as meningitis, or to ototoxic medications, such as Gentamicin. In both cases, the final degree of loss varies. Some experience only partial loss, while others become profoundly deaf. Hearing aids and cochlear implants may be used to regain a sense of hearing, with different people experiencing differing degrees of success. It is possible that the affected person may need to rely on speech-reading and/or sign language for communication.
In most cases the loss is a long term degradation in hearing loss. Discrediting earlier notions of presbycusis, Rosen demonstrated that long term hearing loss is usually the product of chronic exposure to environmental noise in industrialized countries (Rosen, 1965). The U.S. Environmental Protection Agency has asserted the same sentiment and testified before the U.S. Congress that approximately 34 million Americans are exposed to noise pollution levels (mostly from roadway and aircraft noise) that expose humans to noise health effects including the risk of hearing loss (EPA, 1972).
Certain genetic conditions can also lead to post-lingual deafness. In contrast to genetic causes of pre-lingual deafness, which are frequently autosomal recessive, genetic causes of post-lingual deafness tend to be autosomal dominant.
About 1 in 1,000 children in the United States is born with profound deafness. By age 9, about 3 in 1,000 children have hearing loss that affects the activities of daily living. More than half of these cases are caused by genetic factors. Most cases of genetic deafness (70% to 80%) are nonsyndromic; the remaining cases are caused by specific genetic syndromes. In adults, the chance of developing hearing loss increases with age; hearing loss affects half of all people older than 80 years.
Degrees of vision loss vary dramatically, although the ICD-9 released in 1979 categorized them into three tiers: normal vision, low vision, and blindness. Two significant causes of vision loss due to sensory failures include media opacity and optic nerve diseases, although hypoxia and retinal disease can also lead to blindness. Most causes of vision loss can cause varying degrees of damage, from total blindness to a negligible effect. Media opacity occurs in the presence of opacities in the eye tissues or fluid, distorting and/or blocking the image prior to contact with the photoreceptor cells. Vision loss often results despite correctly functioning retinal receptors. Optic nerve diseases such as optic neuritis or retrobulbar neuritis lead to dysfunction in the afferent nerve pathway once the signal has been correctly transmitted from retinal photoreceptors.
Partial or total vision loss may affect every single area of a person's life. Though loss of eyesight may occur naturally as we age, trauma to the eye or exposure to hazardous conditions may also cause this serious condition. Workers in virtually any field may be at risk of sustaining eye injuries through trauma or exposure. A traumatic eye injury occurs when the eye itself sustains some form of trauma, whether a penetrating injury such as a laceration or a non-penetrating injury such as an impact. Because the eye is a delicate and complex organ, even a slight injury may have a temporary or permanent effect on eyesight.
Cortical deafness is a rare form of sensorineural hearing loss caused by damage to the primary auditory cortex. Cortical deafness is an auditory disorder where the patient is unable to hear sounds but has no apparent damage to the anatomy of the ear (see auditory system), which can be thought of as the combination of auditory verbal agnosia and auditory agnosia. Patients with cortical deafness cannot hear any sounds, that is, they are not aware of sounds including non-speech, voices, and speech sounds. Although patients appear and feel completely deaf, they can still exhibit some reflex responses such as turning their head towards a loud sound.
Cortical deafness is caused by bilateral cortical lesions in the primary auditory cortex located in the temporal lobes of the brain. The ascending auditory pathways are damaged, causing a loss of perception of sound. Inner ear functions, however, remains intact. Cortical deafness is most often cause by stroke, but can also result from brain injury or birth defects. More specifically, a common cause is bilateral embolic stroke to the area of Heschl's gyri. Cortical deafness is extremely rare, with only twelve reported cases. Each case has a distinct context and different rates of recovery.
It is thought that cortical deafness could be a part of a spectrum of an overall cortical hearing disorder. In some cases, patients with cortical deafness have had recovery of some hearing function, resulting in partial auditory deficits such as auditory verbal agnosia. This syndrome might be difficult to distinguish from a bilateral temporal lesion such as described above.
Auditory perception can improve with time.There seems to be a level of neuroplasticity that allows patients to recover the ability to perceive environmental and certain musical sounds. Patients presenting with cortical hearing loss and no other associated symptoms recover to a variable degree, depending on the size and type of the cerebral lesion. Patients whose symptoms include both motor deficits and aphasias often have larger lesions with an associated poorer prognosis in regard to functional status and recovery.
Cochlear or auditory brainstem implantation could also be treatment options. Electrical stimulation of the peripheral auditory system may result in improved sound perception or cortical remapping in patients with cortical deafness. However, hearing aids are an inappropriate answer for cases like these. Any auditory signal, regardless if has been amplified to normal or high intensities, is useless to a system unable to complete its processing. Ideally, patients should be directed toward resources to aid them in lip-reading, learning American Sign Language, as well as speech and occupational therapy. Patients should follow-up regularly to evaluate for any long-term recovery.
Treatment is supportive and consists of management of manifestations. User of hearing aids and/or cochlear implant, suitable educational programs can be offered. Periodic surveillance is also important.
Beat deafness is a form of congenital amusia characterized by a person's inability to distinguish musical rhythm or move in time to it.
Many types of sense loss occur due to a dysfunctional sensation process, whether it be ineffective receptors, nerve damage, or cerebral impairment. Unlike agnosia, these impairments are due to damages prior to the perception process.
Local damage and inflammation that interferes with the taste buds or local nervous system such as that stemming from radiation therapy, glossitis, tobacco use, and denture use also cause ageusia. Other known causes include loss of taste sensitivity from aging (causing a difficulty detecting salty or bitter taste), anxiety disorder, cancer, renal failure and liver failure.
Currently, no forms of treatment have proven effective in treating amusia. One study has shown tone differentiation techniques to have some success, however future research on treatment of this disorder will be necessary to verify this technique as an appropriate treatment.
Generally, humans have the ability to hear musical beat and rhythm beginning in infancy. Some people, however, are unable to identify beat and rhythm of music, suffering from what is known as beat deafness. Beat deafness is a newly discovered form of congenital amusia, in which people lack the ability to identify or “hear” the beat in a piece of music. Unlike most hearing impairments in which an individual is unable to hear any sort of sound stimuli, those with beat deafness are generally able to hear normally, but unable to identify beat and rhythm in music. Those with beat deafness are also unable to dance in step to any type of music. Even people who do not dance well can at least coordinate their movements to the song they are listening to, because they can easily keep time to the beat.
Deficiency of vitamin B (niacin) and zinc can cause problems with the endocrine system, which may cause taste loss or alteration. Disorders of the endocrine system, such as Cushing's syndrome, hypothyroidism and diabetes mellitus, can cause similar problems. Ageusia can also be caused by medicinal side-effects from antirheumatic drugs such as penicillamine, antiproliferative drugs such as cisplatin, ACE inhibitors, and other drugs including azelastine, clarithromycin, terbinafine, and zopiclone.
Auditory verbal agnosia (AVA), also known as pure word deafness, is the inability to comprehend speech. Individuals with this disorder lose the ability to understand language, repeat words, and write from dictation. Some patients with AVA describe hearing spoken language as meaningless noise, often as though the person speaking was doing so in a foreign language. However, spontaneous speaking, reading, and writing are preserved. The maintenance of the ability to process non-speech auditory information, including music, also remains relatively more intact than spoken language comprehension. Individuals who exhibit pure word deafness are also still able to recognize non-verbal sounds. The ability to interpret language via lip reading, hand gestures, and context clues is preserved as well. Sometimes, this agnosia is preceded by cortical deafness; however, this is not always the case. Researchers have documented that in most patients exhibiting auditory verbal agnosia, the discrimination of consonants is more difficult than that of vowels, but as with most neurological disorders, there is variation among patients.
Auditory verbal agnosia (AVA) is not the same as Auditory agnosia; patients with (nonverbal) auditory agnosia have a relatively more intact speech comprehension system despite their impaired recognition of nonspeech sounds.
Over the past decade, much has been discovered about amusia. However, there remains a great deal more to learn. While a method of treatment for people with amusia has not been defined, tone differentiation techniques have been used on amusic patients with some success. It was found with this research that children reacted positively to these tone differentiation techniques, while adults found the training annoying. However, further research in this direction would aid in determining if this would be a viable treatment option for people with amusia. Additional research can also serve to indicate which processing component in the brain is essential for normal music development. Also, it would be extremely beneficial to investigate musical learning in relation to amusia since this could provide valuable insights into other forms of learning disabilities such as dysphasia and dyslexia.
No specific treatment exists for Pendred syndrome. Speech and language support and hearing aids are important. Cochlear implants may be needed if the hearing loss drops to severe to profound levels and can improve language skills. If thyroid hormone levels are decreased, thyroid hormone supplements may be required. Patients are advised to take precautions against head injury.
Auditory arrhythmia is the inability to rhythmically perform music, to keep time, and to replicate musical or rhythmic patterns. It has been caused by damage to the cerebrum or rewiring of the brain.
Pendred syndrome is inherited in an autosomal recessive manner, meaning that one would need to inherit an abnormal gene from each parent to develop the condition. This also means that a sibling of a patient with Pendred syndrome has a 25% chance of also having the condition if the parents are unaffected carriers.
It has been linked to mutations in the "PDS" gene, which codes for the "pendrin" protein (solute carrier family 26, member 4, SLC26A4). The gene is located on the long arm of chromosome 7 (7q31). Mutations in the same gene also cause enlarged vestibular aqueduct syndrome (EVA or EVAS), another congenital cause of deafness; specific mutations are more likely to cause EVAS, while others are more linked with Pendred syndrome.
Auditory verbal agnosia has been shown to form as a result of tumor formation, especially in the posterior third ventricle, trauma, lesions, cerebral infarction, encephalitis as a result of herpes simplex, and Landaui-Kleffner syndrome. The exact location of damage which results in pure word deafness is still under debate, but the planum temporale, posterior STG, and white matter damage to the acoustic radiations (AR) have all been implicated.
Auditory verbal agnosia is rarely diagnosed in its pure form. Auditory verbal agnosia can both present as the result of acute damage or as chronic, progressive degeneration over time. Cases have been documented that result from severe acute head trauma resulting in bilateral temporal lobe damage. In contrast, auditory verbal agnosia has also been documented to present progressively over several years. In one such case, the patient exhibited progressive word deafness over a 9-year period but did not exhibit any other cognitive of mental deterioration. MRIs showed cortical atrophy in the left superior temporal lobe region.
In childhood, auditory verbal agnosia can also be caused by Landau-Kleffner syndrome, also called acquired epileptic aphasia. It is often the first symptom of this disease. A review of 45 cases suggested a relationship between prognosis and age of onset with poorer prognosis for those with earlier onset. In extremely rare cases, auditory verbal agnosia has been known to present as a symptom of neurodegenerative disease, such as Alzheimer's disease. In such cases auditory verbal agnosia is a symptom that is typically followed by more severe neurological symptoms typical of Alzheimer's disease.
Presence of inner ear abnormalities lead to Delayed gross development of child because of balance impairment and profound deafness which increases the risk of trauma and accidents.
- Incidence of accidents can be decreased by using visual or vibrotactile alarm systems in homes as well as in schools.
- Anticipatory education of parents, health providers and educational programs about hazards can help.
Symptoms of infections specifically HIV and Herpes simplex encephalitis can cause FCMS. Numerous lesions can develop with HIV infections, which likely result in the development of FCMS.