Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Rothmund–Thomson syndrome (RTS), also known as poikiloderma atrophicans with cataract or poikiloderma congenitale, is a rare autosomal recessive skin condition originally described by August von Rothmund (1830–1906) in 1868. Matthew Sydney Thomson (1894–1969) published further descriptions in 1936.
There have been several reported cases associated with osteosarcoma. A hereditary genetic basis, mutations in the DNA Helicase "RECQL4" gene, causing problems during initiation of DNA replication has been implicated in the syndrome
Kindler syndrome (also known as "bullous acrokeratotic poikiloderma of kindler and weary", is a rare congenital disease of the skin caused by a mutation in the KIND1 gene.
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
Oculocutaneous Albinism Type I or –Type 1A (OCA1A) is an autosomal recessive skin disease associated with albinism. This type of albinism is caused when the gene OCA1 does not function properly.
The location of OCA1 may be written as "11q1.4-q2.1", meaning it is on chromosome 11, long arm, somewhere in the range of band 1, sub-band 4, and band 2, sub-band 1.
Infants and young children with Kindler syndrome have a tendency to blister with minor trauma and are prone to sunburns. As individuals with Kindler syndrome age, they tend to have fewer problems with blistering and photosensitivity. However, pigment changes and thinning of the skin become more prominent.
RAPADILINO syndrome is an autosomal recessive disorder characterized by:
- RA: radial ray defect
- PA: patellar aplasia, arched or cleft palate
- DI: diarrhea, dislocated joints
- LI: little size (short stature), limb malformation
- NO: nose slender and normal intelligence.
It is more prevalent in Finland than elsewhere in the world.
It has been associated with the gene RECQL4. This is also associated with Rothmund-Thomson syndrome and Baller-Gerold syndrome.
In humans, individuals with RTS, and carrying the "RECQL4" germline mutation, can have several clinical features of accelerated aging. These features include atrophic skin and pigment changes, alopecia, osteopenia, cataracts and an increased incidence of cancer. Also in mice, "RECQL4" mutants show features of accelerated aging.
Focal dermal hypoplasia has been associated with PORCN gene mutations on the X chromosome. 90% of the individuals who are affected with the syndrome are female: the commonly accepted, though unconfirmed, explanation for this is that the non-mosaic hemizygous males are not viable.
The differential diagnosis of focal dermal hypoplasia (Goltz) syndrome includes autosomal recessive Setleis syndrome due to TWIST2 gene mutations. It associated with morning glory anomaly, polymicrogyria, incontinentia pigmenti, oculocerebrocutaneous syndrome, Rothmund-Thomson syndrome and microphthalmia with linear skin defects (also known as MLS) syndrome because they are all caused by deletions or point mutations in the HCCS gene.
This includes Chediak-Higashi syndrome and Elejalde syndrome (neuroectodermal melanolysosomal disease).
This not known with certainty but is estimated to be about one per million. It appears to be more common in females than males.
Trisomy 8 mosaicism affects wide areas of chromosome 8 containing many genes, and can thus be associated with a range of symptoms.
- Mosaic trisomy 8 has been reported in rare cases of Rothmund-Thomson syndrome, a genetic disorder associated with the DNA helicase RECQL4 on chromosome 8q24.3. The syndrome is "characterized by skin atrophy, telangiectasia, hyper- and hypopigmentation, congenital skeletal abnormalities, short stature, premature aging, and increased risk of malignant disease".
- Some individuals trisomic for chromosome 8 were deficient in production of coagulation factor VII due to a factor 7 regulation gene (F7R) mapped to 8p23.3-p23.1.
- Trisomy and other rearrangements of chromosome 8 have also been found in tricho–rhino–phalangeal syndrome.
- Small regions of chromosome 8 trisomy and monosomy are also created by recombinant chromosome 8 syndrome (San Luis Valley syndrome), causing anomalies associated with tetralogy of Fallot, which results from recombination between a typical chromosome 8 and one carrying a parental paracentric inversion.
- Trisomy is also found in some cases of chronic myeloid leukaemia, potentially as a result of karyotypic instability caused by the fusion gene.
Some biogerontologists question that such a thing as "accelerated aging" actually exists, at least partly on the grounds that all of the so-called accelerated aging diseases are segmental progerias. Many disease conditions such as diabetes, high blood pressure, etc., are associated with increased mortality. Without reliable biomarkers of aging it is hard to support the claim that a disease condition represents more than accelerated mortality.
Against this position other biogerontologists argue that premature aging phenotypes are identifiable symptoms associated with mechanisms of molecular damage. The fact that these phenotypes are widely recognized justifies classification of the relevant diseases as "accelerated aging". Such conditions, it is argued, are readily distinguishable from genetic diseases associated with increased mortality, but not associated with an aging phenotype, such as cystic fibrosis and sickle cell anemia. It is further argued that segmental aging phenotype is a natural part of aging insofar as genetic variation leads to some people being more disposed than others to aging-associated diseases such as cancer and Alzheimer's disease.
Children with Pfeiffer syndrome types 2 and 3 "have a higher risk for neurodevelopmental disorders and a reduced life expectancy" than children with Pfeiffer syndrome type 1, but if treated, favorable outcomes are possible. In severe cases, respiratory and neurological complications often lead to early death.
Fucosidosis is an extremely rare disorder first described in 1962 in two Italian siblings who showed progressive intellectual disability and neurological deterioration. The disease itself is extremely rare (less than 100 documented cases) only affecting 1:2,000,000, with most cases being occurring in Italy, Cuba, and the southwest U.S. The disease has three different types. Type 1 and 2 are considered severe, and Type 3 being a mild disease. Symptoms are highly variable with mild cases being able to live to within the third or fourth decade. Type 1 and 2 are both linked with mental retardation. Severe cases can develop life-threatening complications early in childhood.
Because the major accumulating glycoconjugate in fucosidosis patients is the blood group H-antigen, it is intriguing to speculate, but the evidence is not clear at this time, that blood type may affect the course of the disease.
Collagen, type II, alpha 1 (primary osteoarthritis, spondyloepiphyseal dysplasia, congenital), also known as COL2A1, is a human gene that provides instructions for the production of the pro-alpha1(II) chain of type II collagen.
DNA repair defects are seen in nearly all of the diseases described as accelerated aging disease, in which various tissues, organs or systems of the human body age prematurely. Because the accelerated aging diseases display different aspects of aging, but never every aspect, they are often called segmental progerias by biogerontologists.
Hereditary sclerosing poikiloderma is an autosomal dominant conditions with skin changes consisting of generalized poikiloderma appearing in childhood.
Baller–Gerold syndrome is caused by a mutation in the RECQL4 gene found on chromosome 8p24. Molecular genetic tests used to identify mutations in the RECQL4 gene include targeted variant analysis and sequence analysis of the entire coding region of the gene. These methods look for changes in the sequence encoding RECQL4, as having a deleterious mutation in the gene will change the protein and disrupt its usual function. RECQL4 is a gene that encodes a DNA helicase in the RecQ helicase family. Helicases are involved with unwinding DNA in preparation for DNA replication and repair.
Baller–Gerold syndrome is inherited in an autosomal recessive pattern of inheritance, meaning that an affected child gets one mutant allele from each parent to produce the syndrome. A carrier is someone who has one mutant allele but does not does have any symptoms. If both parents are carriers, there is a 25% chance the child will have BGS. There is also a 50% chance the child will have one mutant copy (be a carrier) and be asymptomatic and a 25% chance the child will be asymptomatic and not a carrier. In order for someone to have BGS, they need to have two mutant copies of the gene. Adults may pursue genetic counselling to understand the syndrome, as well as the risks and choices regarding family planning.
Focal dermal hypoplasia (also known as "Goltz syndrome") is a form of ectodermal dysplasia. It is a multisystem disorder characterized primarily by skin manifestations to the atrophic and hypoplastic areas of skin which are present at birth. These defects manifest as yellow-pink bumps on the skin and pigmentation changes. The disorder is also associated with shortness of stature and some evidence suggests that it can cause epilepsy.
While there is no cure for BGS, symptoms can be treated as they arise. Surgery shortly after birth can repair craniosynostosis, as well as defects in the hand to create a functional grasp. There are risks associated with untreated craniosynostosis, therefore surgery is often needed to separate and reshape the bones. Since patients with a RECQL4 mutation may be at an increased risk of developing cancer, surveillance is recommended.
Trisomy 8, also known as Warkany syndrome 2, is a human chromosomal disorder caused by having three copies (trisomy) of chromosome 8. It can appear with or without mosaicism.
Autoimmune polyendocrine syndrome type 1 (APS-1), also known as autoimmune polyendocrinopathy-candidiasis–ectodermal dystrophy/dysplasia (APECED), autoimmune polyglandular syndrome type 1, Whitaker syndrome, or candidiasis-hypoparathyroidism–Addison's disease syndrome, is a subtype of autoimmune polyendocrine syndrome (autoimmune polyglandular syndrome) in which multiple endocrine glands dysfunction as a result of autoimmunity. It is a genetic disorder inherited in autosomal recessive fashion due to a defect in the "AIRE" gene (autoimmune regulator), which is located on chromosome 21 and normally confers immune tolerance.
Recent findings in genetic research have suggested that a large number of genetic disorders, both genetic syndromes and genetic diseases, that were not previously identified in the medical literature as related, may be, in fact, highly related in the genotypical root cause of these widely varying, phenotypically-observed disorders. Orofaciodigital syndrome has been found to be a ciliopathy. Other known ciliopathies include primary ciliary dyskinesia, Bardet-Biedl syndrome, polycystic kidney disease and polycystic liver disease, nephronophthisis, Alstrom syndrome, Meckel-Gruber syndrome and some forms of retinal degeneration.
Progeroid syndromes (PS) are a group of rare genetic disorders which mimic physiological aging, making affected individuals appear to be older than they are. The term "progeroid syndrome" does not necessarily imply progeria (Hutchinson–Gilford progeria syndrome), which is a specific type of progeroid syndrome.
"Progeroid" means "resembling premature aging", a definition that can apply to a broad range of diseases. Familial Alzheimer's disease and familial Parkinson's disease are two well-known accelerated-aging diseases that are more frequent in older individuals. They affect only one tissue and can be classified as unimodal progeroid syndromes. Segmental progeria, which is more frequently associated with the term "progeroid syndrome", tends to affect multiple or all tissues while causing affected individuals to exhibit only some of the features associated with aging.
All disorders within this group are thought to be monogenic, meaning they arise from mutations of a single gene. Most known PS are due to genetic mutations that lead to either defects in the DNA repair mechanism or defects in lamin A/C.
Examples of PS include Werner syndrome (WS), Bloom syndrome (BS), Rothmund–Thomson syndrome (RTS), Cockayne syndrome (CS), xeroderma pigmentosum (XP), trichothiodystrophy (TTD), combined xeroderma pigmentosum-Cockayne syndrome (XP-CS), restrictive dermopathy (RD), and Hutchinson–Gilford progeria syndrome (HGPS). Individuals with these disorders tend to have a reduced lifespan. Progeroid syndromes have been widely studied in the fields of aging, regeneration, stem cells, and cancer. The most widely studied of the progeroid syndromes are Werner syndrome and Hutchinson–Gilford progeria, as they are seen to most resemble natural aging.
It has several different types:
- type 1 - Apert syndrome
- type 2 - Crouzon syndrome
- type 3 - Saethre-Chotzen syndrome
- type 5 - Pfeiffer syndrome
A related term, "acrocephalopolysyndactyly" (ACPS), refers to the inclusion of polydactyly to the presentation. It also has multiple types:
- type 1 - Noack syndrome; now classified with Pfeiffer syndrome
- type 2 - Carpenter syndrome
- type 3 - Sakati-Nyhan-Tisdale syndrome
- type 4 - Goodman syndrome; now classified with Carpenter syndrome
- type 5 - Pfeiffer syndrome
It has been suggested that the distinction between "acrocephalosyndactyly" versus "acrocephalopolysyndactyly" should be abandoned.