Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Plexopathy symptoms often resemble spinal cord disorders. A neurosurgical consultation is usually undertaken to ensure proper diagnosis, management, and treatment. Patients with chronic symptoms will likely be advised to follow up with outpatient care from either their health care provider or specialist.
Plexopathy is a disorder affecting a of nerves, blood vessels, or lymph vessels. The region of nerves it affects are at the brachial or lumbosacral plexus. Symptoms include pain, loss of motor control, and sensory deficits.
There are two main types of plexopathy: brachial plexopathy and lumbosacral plexopathy. They are usually caused from some sort of localized trauma such as a dislocated shoulder. The disorder can also be caused secondary to a compression, co-morbid vascular disease, infection, or may be idiopathic with an unknown cause. Both plexopathies can also occur as a consequence of radiation therapy, sometimes after 30 or more years have passed, in conditions known as Radiation-induced Brachial Plexopathy (RIBP) and Radiation-induced Lumbosacral Plexopathy (RILP).
Proximal diabetic neuropathy, more commonly known as diabetic amyotrophy, is a nerve disorder that results as a complication of diabetes mellitus. It can affect the thighs, hips, buttocks or lower legs. Proximal diabetic neuropathy is a peripheral nerve disease (diabetic neuropathy) characterized by muscle wasting or weakness, pain, or changes in sensation/numbness of the leg. Diabetic neuropathy is an uncommon complication of diabetes. It is a type of lumbosacral plexopathy, or adverse condition affecting the lumbosacral plexus.
There are a number of ways that diabetes damages the nerves, all of which seem to be related to increased blood sugar levels over a long period of time. Proximal diabetic neuropathy is one of four types of diabetic neuropathy.
Proximal diabetic neuropathy can occur in type 2 and type 1 diabetes mellitus patients however, it is most commonly found in type 2 diabetics. Proximal neuropathy is the second most common type of diabetic neuropathy and can be resolved with time and treatment.
The nerve damage associated with the disease was first thought to be caused by metabolic changes such as endoneurial microvessel disease, which is the degeneration of pericytes due to hyperglycemia, and the reproduction of basement membranes when the pericytes are no longer regulating their cell cycle. The decreased size of the lumen plus the absence of the pericyte, which regulate capillary blood flow and phagocytosis of cellular debris, leads to ischemia. Nerve biopsies have shifted the view toward an immune mechanism that causes Micro Vasculitis, which could eventually lead to ischemia. Experimental treatments using immunosuppressive proteins have provided further corroborative evidence to the immune mechanism theory. Although this disease does occur in patients without diabetes the prevalence is much greater in the diabetic indicating that although hyperglycemia does not directly cause the nerve damage it may play a role.
The mechanism of axonal degeneration has not been clarified and is an area of continuing research on alcoholic polyneuropathy.
Further research is looking at the effect an alcoholics’ consumption and choice of alcoholic beverage on their development of alcoholic polyneuropathy. Some beverages may include more nutrients than others (such as thiamine), but the effects of this with regards to helping with a nutritional deficiency in alcoholics is yet unknown.
There is still controversy about the reasons for the development of alcoholic polyneuropathy. Some argue it is a direct result of alcohol's toxic effect on the nerves, but others say factors such as a nutritional deficiency or chronic liver disease may play a role in the development as well. This debate is ongoing and research is continuing in an effort to discover the real cause of alcoholic polyneuropathy.
The rate of incidence of alcoholic polyneuropathy involving sensory and motor polyneuropathy varies from 10% to 50% of alcoholics depending on the subject selection and diagnostic criteria. If electrodiagnostic criteria is used, alcoholic polyneuropathy may be found in up to 90% of individuals being assessed. The distribution and severity the disease depends on regional dietary habits, individual drinking habits, as well as an individual’s genetics. Large studies have been conducted and show that alcoholic polyneuropathy severity and incidence correlates best with the total lifetime consumption of alcohol. Factors such as nutritional intake, age, or other medical conditions are correlate in lesser degrees. For unknown reasons, alcoholic polyneuropathy has a high incidence in women.
Certain alcoholic beverages can also contain congeners that may also be bioactive; therefore, the consumption of varying alcoholic beverages may result in different health consequences. An individual’s nutritional intake also plays a role in the development of this disease. Depending on the specific dietary habits, they may have a deficiency of one or more of the following: thiamine (vitamin B1), pyridoxine (vitamin B6), pantothenic acid and biotin, vitamin B12, folic acid, niacin (vitamin B3), and vitamin A.
The American College of Rheumatology has outlined 19 syndromes that are seen in NPSLE. These syndromes encompass disorders of the central and peripheral nervous systems:
- Aseptic meningitis
- Cerebrovascular disease
- Demyelinating syndrome
- Headache
- Movement disorder
- Myelopathy
- Seizure disorders
- Acute confusional state
- Anxiety disorder
- Cognitive dysfunction
- Mood disorder
- Psychosis
- Acute inflammatory demyelinating polyradiculoneuropathy
- Autonomic disorder
- Mononeuropathy (single/multiplex)
- Myasthenia gravis
- Cranial neuropathy
- Plexopathy
- Polyneuropathy
Each of the 19 syndromes are also stand-alone diagnoses, which can occur with or without lupus.
The majority of cases involve the central nervous system (CNS), which consists of the brain and spinal cord. The CNS syndromes can be subcategorized as either focal or diffuse. The focal syndromes are neurological, while the diffuse syndromes are psychiatric in nature. The most common CNS syndromes are headache and mood disorder.
Though neuropsychiatric lupus is sometimes referred to as "CNS lupus", it can also affect the peripheral nervous system (PNS). Between 10-15% of people with NPSLE have PNS involvement. Mononeuropathy and polyneuropathy are the most common PNS syndromes.
There are several possible mechanisms that underlie the nervous system manifestations of lupus. Specific syndromes may be vasculopathic, autoantibody-mediated, or inflammatory in nature.
There is evidence that the blood–brain barrier, which protects the central nervous system, is compromised in patients with NPSLE. As a result of this, autoantibodies are able to infiltrate the CNS and cause damage.
SLE, like many autoimmune diseases, affects females more frequently than males, at a rate of about 9 to 1. The X chromosome carries immunological related genes, which can mutate and contribute to the onset of SLE. The Y chromosome has no identified mutations associated with autoimmune disease.
Hormonal mechanisms could explain the increased incidence of SLE in females. The onset of SLE could be attributed to the elevated hydroxylation of estrogen and the abnormally decreased levels of androgens in females. In addition, differences in GnRH signalling have also shown to contribute to the onset of SLE. While females are more likely to relapse than males, the intensity of these relapses is the same for both sexes.
In addition to hormonal mechanisms, specific genetic influences found on the X chromosome may also contribute to the development of SLE. Studies indicate that the X chromosome can determine the levels of sex hormones. A study has shown an association between Klinefelter syndrome and SLE. XXY males with SLE have an abnormal X–Y translocation resulting in the partial triplication of the PAR1 gene region.
There are assertions that race affects the rate of SLE. However, a 2010 review of studies which correlate race and SLE identified several sources of systematic and methodological error, indicating that the connection between race and SLE may be spurious. For example, studies show that social support is a modulating factor which buffers against SLE-related damage and maintains physiological functionality. Studies have not been conducted to determine whether people of different racial backgrounds receive differing levels of social support. If there is a difference, this could act as a confounding variable in studies correlating race and SLE. Another caveat to note when examining studies about SLE is that symptoms are often self-reported. This process introduces additional sources of methodological error. Studies have shown that self-reported data is affected by more than just the patients experience with the disease- social support, the level of helplessness, and abnormal illness-related behaviors also factor into a self-assessment. Additionally, other factors like the degree of social support that a person receives, socioeconomic status, health insurance, and access to care can contribute to an individual’s disease progression. Racial differences in lupus progression have not been found in studies that control for the socioeconomic status [SES] of participants. Studies that control for the SES of its participants have found that non-white people have more abrupt disease onset compared to white people and that their disease progresses more quickly. Non-white patients often report more hematological, serosal, neurological, and renal symptoms. However, the severity of symptoms and mortality are both similar in white and non-white patients. Studies that report different rates of disease progression in late-stage SLE are most likely reflecting differences in socioeconomic status and the corresponding access to care. The people who receive medical care have often accrued less disease-related damage and are less likely to be below the poverty line. Additional studies have found that education, marital status, occupation, and income create a social context which contributes to disease progression.