Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Critics of the diagnosis complain that case evidence is spotty and lacking controlled clinical studies.
The incidence of acute TTP in adults is around 1.7–4.5 per million and year. These cases are nearly all due to the autoimmune form of TTP, where autoantibodies inhibit ADAMTS13 activity. The prevalence of USS has not yet been determined but is assumed to constitute less than 5% of all acute TTP cases. The syndrome's inheritance is autosomal recessive, and is more often caused by compound heterozygous than homozygous mutations. The age of onset is variable and can be from neonatal age up to the 5th–6th decade. The risk of relapses differs between affected individuals. Minimization of the burden of disease can be reached by early diagnosis and initiation of prophylaxis if required.
Sticky platelet syndrome is a term used by some to describe a disorder of platelet function. It was first described by Mammen in 1983. It is inherited in an autosomal dominant pattern. It has not been associated with a specific gene, and it is not recognized as an entity in OMIM.
Among researchers using the term, it has been described as a coagulation disorder that can present in conjunction with protein S deficiency and Factor V Leiden. It is not currently known if sticky platelet syndrome is a distinct condition, or if it represents part of the presentation of a more well characterized coagulation disorder.
Gray platelet syndrome (GPS), or platelet alpha-granule deficiency, is a rare congenital autosomal recessive bleeding disorder caused by a reduction or absence of alpha-granules in blood platelets, and the release of proteins normally contained in these granules into the marrow, causing myelofibrosis.
GPS is primarily inherited in an autosomal recessive manner, and the gene that is mutated in GPS has recently been mapped to chromosome 3p and identified as "NBEAL2". "NBEAL2" encodes a protein containing a BEACH domain that is predicted to be involved in vesicular trafficking. It is expressed in platelets and megakaryocytes and is required for the development of platelet alpha-granules. "NBEAL2" expression is also required for the development of thrombocytes in zebrafish.
GPS is characterized by "thrombocytopenia, and abnormally large agranular platelets in peripheral blood smears." The defect in GPS is the failure of megakaryocytes to package secretory proteins into alpha-granules. Patients with the GPS are affected by mild to moderate bleeding tendencies. Usually these are not major bleeds but there has been some life threatening cases. Also Women will tend to have heavy, irregular periods. Myelofibrosis is a condition that usually comes with the Gray Platelet syndrome.
The prevalence of vWD is about one in 100 individuals. However, the majority of these people do not have symptoms. The prevalence of clinically significant cases is one per 10,000. Because most forms are rather mild, they are detected more often in women, whose bleeding tendency shows during menstruation. It may be more severe or apparent in people with blood type O.
HPS is one of the rare lung diseases currently being studied by The Rare Lung Diseases Consortium (RLDC). The RLDC is part of the Rare Diseases Clinical Research Network (RDCRN), an initiative of the Office of Rare Diseases Research (ORDR), of the National Center for Advancing Translational Sciences (NCATS). The RLDC is dedicated to developing new diagnostics and therapeutics for patients with rare lung diseases, through collaboration between the NIH, patient organizations and clinical investigators.
Scott syndrome is a rare congenital bleeding disorder that is due to a defect in a platelet mechanism required for blood coagulation.
Normally when a vascular injury occurs, platelets are activated and phosphatidylserine (PS) in the inner leaflet of the platelet membrane is transported to the outer leaflet of the platelet membrane, where it provides a binding site for plasma protein complexes that are involved in the conversion of prothrombin to thrombin, such as factor VIIIa-IXa (tenase) and factor Va-Xa (prothrombinase).
In Scott syndrome, the mechanism for translocating PS to the platelet membrane is defective, resulting in impaired thrombin formation. A similar defect in PS translocation has also been demonstrated in Scott syndrome red blood cells and Epstein-Barr virus transformed lymphocytes, suggesting that the defect in Scott syndrome reflects a mutation in a stem cell that affects multiple hematological lineages.
The basis for the defect in PS translocation is, at present, unknown. A candidate protein, scramblase, that may be involved in this process appears to be normal in Scott syndrome platelets. Other possible defects in PS translocation, reported in some patients, require further study. The initially reported patient with Scott Syndrome has been found to have a mutation at a splice-acceptor site of the gene encoding transmembrane protein 16F (TMEM16F). At present, the only treatment for episodes of bleeding is the transfusion of normal platelets.
Individuals with QPD are at risk for experiencing a number of bleeding symptoms, including joint bleeds, hematuria, and large bruising. In 2010, the genetic cause of QPD has been determined as a mutation involving an extra copy of the uPA (urokinase plasminogen activator) gene http://bloodjournal.hematologylibrary.org/content/115/6/1264.long. The mutation causes overproduction of an enzyme that accelerates blood clot breakdown.
The course of HPS has been mild in rare instances of the disorder, however, the general prognosis is still considered to be poor.
The disease can cause dysfunctions of the lungs, intestine, kidneys, and heart. The major complication of most forms of the disorder is pulmonary fibrosis, which typically exhibits in patients ages 40–50 years. This is a fatal complication seen in many forms of HPS, and is the usual cause of death from the disorder. HPS patients who develop pulmonary fibrosis typically have type 1 or type 4.
The disorder is characterized by large amounts of the fibrinolytic enzyme urokinase-type plasminogen activator (u-PA) in platelets. Consequently, stored platelet plasminogen is converted to plasmin, which is thought to play a role in degrading a number of proteins stored in platelet α-granules. These proteins include platelet factor V, Von Willebrand factor, fibrinogen, thrombospondin-1, and osteonectin. There is also a quantitative deficiency in the platelet protein multimerin 1 (MMRN1). Furthermore, upon QPD platelet activation, u-PA can be released into forming clots and accelerate clot lysis, resulting in delayed-onset bleeding (12-24hrs after injury).
The vWF gene is located on the short arm "p" of chromosome 12 (12p13.2). It has 52 exons spanning 178kbp. Types 1 and 2 are inherited as autosomal dominant traits and type 3 is inherited as autosomal recessive. Occasionally, type 2 also inherits recessively. vWD occurs in approximately 1% of the population and affects men and women equally.
Several therapy developments for TTP emerged during recent years. Artificially produced ADAMTS13 has been used in mice and testing in humans has been announced. Another drug in development is targeting VWF and its binding sites, thereby reducing VWF-platelet interaction, especially on ULVWF during a TTP episode. Among several (multi-)national data bases a worldwide project has been launched to diagnose USS patients and collect information about them to gain new insights into this rare disease with the goal to optimize patient care.
The estimated incidence of Wiskott–Aldrich syndrome in the United States is one in 250,000 live male births. No geographical factor is present.
Hydroxycarbamide and anagrelide are contraindicated during pregnancy and nursing. Essential thrombocytosis can be linked with a three-fold increase in risk of miscarriage. Throughout pregnancy, close monitoring of the mother and fetus is recommended. Low-dose low molecular weight heparin (e.g. enoxaparin) may be used. For life-threatening complications, the platelet count can be reduced rapidly using platelet apheresis, a procedure that removes platelets from the blood and returns the remainder to the patient.
Platelet storage pool deficiency is a type of coagulopathy characterized by defects in the granules in platelets, particularly a lack of granular non-metabolic ADP. Individuals with ADP deficient "storage pool disease" present a prolonged bleeding time due to impaired aggregation response to fibrillar collagen.
In terms of treatment/management, bleeding events can be controlled by platelet transfusion.
Most heterozygotes, with few exceptions, do not have a bleeding diathesis. BSS presents as a bleeding disorder due to the inability of platelets to bind and aggregate at sites of vascular endothelial injury. In the event of an individual with mucosal bleeding tranexamic acid can be given.
The affected individual may need to avoid contact sports and medications such as aspirin, which can increase the possibility of bleeding. A potential complication is the possibility of the individual producing antiplatelet antibodies
A 2009 study reported results from 36 children who had received a stem cell transplant. At the time of follow-up (median time 62 months), 75% of the children were still alive.
Harris platelet syndrome (HPS) is the most common inherited giant platelet disorder.
The condition of platelet storage pool deficiency can be acquired or inherited(genetically passed on from the individuals parents).Some of the causes of platelet storage pool deficiency when acquired are:
The incidence of ET is 0.6-2.5/100,000 per year, the median age at onset is 65–70 years and it is more frequent in females than in males. The incidence in children is 0.09/100,000 per year.
A 2007 research article identified a region of chromosome 1, 1q21.1, containing 11 genes (including HFE2, LIX1L, PIAS3, ANKRD35, ITGA10, RBM8A, PEX11B, POLR3GL, TXNIP, and GNRR2), that is heterozygously deleted in thirty of thirty patients with TAR. This deletion was also found in 32% of unaffected family members, indicating that the condition requires an additional modifier.
This modifier was discoverd in 2012. A study identified two separate single-nucleotide polymorphism (SNP) in "RBM8A". These abnormalities resulting in reduced Y14 production that were responsible for all but two of the cases studied, one a 5'UTR SNP with a frequency of 3.05% and the other an intronic SNP with a frequency of 0.42% in 7504 healthy individuals of the Cambridge BioResource. The microdeletion was not found in 5919 controls of the Wellcome Trust Case Control Consortium.
TAR Syndrome (thrombocytopenia with absent radius) is a rare genetic disorder that is characterized by the absence of the radius bone in the forearm and a dramatically reduced platelet count.
HPS was identified among healthy blood donors in the north-eastern part of the Indian subcontinent, characterized by absent bleeding symptoms, mild to severe thrombocytopenia (platelets rarely <50 X 109/L)with giant platelets (Mean platelet volume 10fL) and normal platelet aggregation studies with absent MYH9 mutation.
In the blood donors with HPS authors found a statistically higher MPV, RDW and a lower platelet count and platelet biomass.
At present the diagnosis of HPS is made by ascertaining the ethnicity of the patient, as well as assessing for conditions causing acquired thrombocytopenias, and after also excluding the known inherited giant platelet disorders(IGPD) and other congenital thrombocytopenias. Unfortunately some patients with IGPD are treated inappropriately with corticosteroids, immunoglobulin infusions and even splenectomy.
It is extremely important to recognize Harris platelet syndrome, as one third the population of certain parts of Indian subcontinent is affected.
Anti-platelet autoantibodies in a pregnant woman with ITP will attack the patient's own platelets and will also cross the placenta and react against fetal platelets. Therefore, ITP is a significant cause of fetal and neonatal immune thrombocytopenia. Approximately 10% of newborns affected by ITP will have platelet counts <50,000/uL and 1% to 2% will have a risk of intracerebral hemorrhage comparable to infants with neonatal alloimmune thrombocytopenia (NAIT).
No lab test can reliably predict if neonatal thrombocytopenia will occur. The risk of neonatal thrombocytopenia is increased with:
- Mothers with a history of splenectomy for ITP
- Mothers who had a previous infant affected with ITP
- Gestational (maternal) platelet count less than 100,000/uL
It is recommended that pregnant women with thrombocytopenia or a previous diagnosis of ITP should be tested for serum antiplatelet antibodies. A woman with symptomatic thrombocytopenia and an identifiable antiplatelet antibody should be started on therapy for their ITP which may include steroids or IVIG. Fetal blood analysis to determine the platelet count is not generally performed as ITP-induced thrombocytopenia in the fetus is generally less severe than NAIT. Platelet transfusions may be performed in newborns, depending on the degree of thrombocytopenia. It is recommended that neonates be followed with serial platelet counts for the first few days after birth.,
Bernard–Soulier syndrome (BSS), also called hemorrhagiparous thrombocytic dystrophy, is a rare autosomal recessive coagulopathy (bleeding disorder) that causes a deficiency of "glycoprotein Ib" (GpIb), the receptor for von Willebrand factor. The incidence of BSS is estimated to be less than 1 case per million persons, based on cases reported from Europe, North America, and Japan. BSS is a giant platelet disorder, meaning that it is characterized by abnormally large platelets.