Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Training of the feet, utilizing foot gymnastics and going barefoot on varying terrain, can facilitate the formation of arches during childhood, with a developed arch occurring for most by the age of four to six years. Ligament laxity is also among the factors known to be associated with flat feet. One medical study in India with a large sample size of children who had grown up wearing shoes and others going barefoot found that the longitudinal arches of the bare-footers were generally strongest and highest as a group, and that flat feet were less common in children who had grown up wearing sandals or slippers than among those who had worn closed-toe shoes. Focusing on the influence of footwear on the prevalence of pes planus, the cross-sectional study performed on children noted that wearing shoes throughout early childhood can be detrimental to the development of a normal or a high medial longitudinal arch. The vulnerability for flat foot among shoe-wearing children increases if the child has an associated ligament laxity condition. The results of the study suggest that children be encouraged to play barefooted on various surfaces of terrain and that slippers and sandals are less harmful compared to closed-toe shoes. It appeared that closed-toe shoes greatly inhibited the development of the arch of the foot more so than slippers or sandals. This conclusion may be a result of the notion that intrinsic muscle activity of the arch is required to prevent slippers and sandals from falling off the child’s foot.
Flat feet can also develop as an adult ("adult acquired flatfoot") due to injury, illness, unusual or prolonged stress to the foot, faulty biomechanics, or as part of the normal aging process. This is most common in women over 40 years of age. Known risk factors include obesity, hypertension and diabetes. Flat feet can also occur in pregnant women as a result of temporary changes, due to increased elastin (elasticity) during pregnancy. However, if developed by adulthood, flat feet generally remain flat permanently.
If a youth or adult appears flatfooted while standing in a full weight bearing position, but an arch appears when the person plantarflexes, or pulls the toes back with the rest of the foot flat on the floor, this condition is called flexible flatfoot. This is not a true collapsed arch, as the medial longitudinal arch is still present and the windlass mechanism still operates; this presentation is actually due to excessive pronation of the foot (rolling inwards), although the term 'flat foot' is still applicable as it is a somewhat generic term. Muscular training of the feet is helpful and will often result in increased arch height regardless of age.
There are few good estimates of prevalence for pes cavus in the general community. While pes cavus has been reported in between 2 and 29% of the adult population, there are several limitations of the prevalence data reported in these studies. Population-based studies suggest the prevalence of the cavus foot is approximately 10%.
Morton's Toe is a minority variant of foot shape. Its recorded prevalence varies in different populations, with estimates from 2.95% to 22%.
Pes cavus may be hereditary or acquired, and the underlying cause may be neurological, orthopedic, or neuromuscular. Pes cavus is sometimes—but not always—connected through Hereditary Motor and Sensory Neuropathy Type 1 (Charcot-Marie-Tooth disease) and Friedreich's Ataxia; many other cases of pes cavus are natural.
The cause and deforming mechanism underlying pes cavus is complex and not well understood. Factors considered influential in the development of pes cavus include muscle weakness and imbalance in neuromuscular disease, residual effects of congenital clubfoot, post-traumatic bone malformation, contracture of the plantar fascia, and shortening of the Achilles tendon.
Among the cases of neuromuscular pes cavus, 50% have been attributed to Charcot-Marie-Tooth disease, which is the most common type of inherited neuropathy with an incidence of 1 per 2,500 persons affected. Also known as Hereditary Motor and Sensory Neuropathy (HMSN), it is genetically heterogeneous and usually presents in the first decade of life with delayed motor milestones, distal muscle weakness, clumsiness, and frequent falls. By adulthood, Charcot-Marie-Tooth disease can cause painful foot deformities such as pes cavus. Although it is a relatively common disorder affecting the foot and ankle, little is known about the distribution of muscle weakness, severity of orthopaedic deformities, or types of foot pain experienced. There are no cures or effective courses of treatment to halt the progression of any form of Charcot-Marie-Tooth disease.
The development of the cavus foot structure seen in Charcot-Marie-Tooth disease has been previously linked to an imbalance of muscle strength around the foot and ankle. A hypothetical model proposed by various authors describes a relationship whereby weak evertor muscles are overpowered by stronger invertor muscles, causing an adducted forefoot and inverted rearfoot. Similarly, weak dorsiflexors are overpowered by stronger plantarflexors, causing a plantarflexed first metatarsal and anterior pes cavus.
Pes cavus is also evident in people without neuropathy or other neurological deficit. In the absence of neurological, congenital, or traumatic causes of pes cavus, the remaining cases are classified as being ‘idiopathic’ because their aetiology is unknown.
The most common cause of foot pain is wearing ill fitting shoes. Women often wear tight shoes that are narrow and constrictive, and thus are most prone to foot problems. Tight shoes often cause overcrowding of toes and result in a variety of structural defects. The next most common cause of foot disease is overuse or traumatic injuries.
There are many hypotheses about how clubfoot develops. Some hypothesis include: environmental factors, genetics, or a combination of both. Research has not yet pinpointed the root cause, but many findings agree that "it is likely there is more than one different cause and at least in some cases the phenotype may occur as a result of a threshold effect of different factors acting together."
Some researchers hypothesize, from the early development stages of humans, that clubfoot is formed by a malfunction during gestation. Early amniocentesis (11–13 wks) is believed to increase the rate of clubfoot because there is an increase in potential amniotic leakage from the procedure. Underdevelopment of the bones and muscles of the embryonic foot may be another underlying cause. In the early 1900s it was thought that constriction of the foot by the uterus contributed to the occurrence of clubfoot.
Underdevelopment of the bones also affects the muscles and tissues of the foot. Abnormality in the connective tissue causes "the presence of increased fibrous tissue in muscles, fascia, ligaments and tendon sheaths".
The exact cause is unclear. Proposed factors include wearing overly tight shoes, family history, and rheumatoid arthritis. Some state that footwear only worsens a problem caused by genetics.
Atherosclerotic restriction to the arterial supply in peripheral artery occlusive disease may result in painful arterial ulcers of the ankle and foot, or give rise of gangrene of the toes and foot. Immobility of a person may result in prolonged pressure applied to the heels causing pressure sores.
Impaired venous drainage from the foot in varicose veins may sequentially result in brown haemosiderin discolouration to the ankle and foot, varicose stasis dermatitis and finally venous ulcers.
Other disorders of the foot include osteoarthritis of the joints, peripheral neuropathy and plantar warts.
An equinovalgus is a deformity of the human foot. It may be a flexible deformity or a fixed deformity. Equino- means plantarflexed (as in standing on one's toes), and valgus means that the base of the heel is rotated away from the midline of the foot (eversion) and abduction of foot. This means that the patient is placing his/her weight on the medial border of the foot, and the arch of the foot is absent, which distorts the foot's normal shape.
Equinovalgus mostly occurs due to tightness of plantar flexors (calf muscles) and peroneus group of muscles.
Clubfoot is a birth defect where one or both feet are rotated inwards and downwards. The affected foot, calf, and leg may be smaller than the other. In about half of those affected, both feet are involved. Most cases are not associated with other problems. Without treatment, people walk on the sides of their feet which causes issues with walking.
The exact cause is usually unclear. A few cases are associated with distal arthrogryposis or myelomeningocele. If one identical twin is affected there is a 33% chance the other one will be as well. Diagnosis may occur at birth or before birth during an ultrasound exam.
Initial treatment is most often with the Ponseti method. This involves moving the foot into an improved position followed by casting, which is repeated at weekly intervals. Once the inward bending is improved, the Achilles tendon is often cut and braces are worn until the age of four. Initially the brace is worn nearly continuously and then just at night. In about 20% of cases further surgery is required.
Clubfoot occurs in about one in 1,000 newborns. The condition is less common among the Chinese and more common among Maori. Males are affected about twice as often as females. Treatment can be carried out by a range of healthcare providers and can generally be achieved in the developing world with few resources.
Rocker bottom foot, also known as congenital vertical talus, is an anomaly of the foot. It is characterized by a prominent calcaneus (heel bone) and a convex rounded bottom of the foot. It gets its name from the foot's resemblance to the bottom of a rocking chair.
It can be associated with Edwards' syndrome (trisomy 18), Patau syndrome (trisomy 13), Trisomy 9 and mutation in the gene HOXD10.
It can also be associated with Charcots foot.
Yoga foot drop is a kind of drop foot, a gait abnormality. It is caused by a prolonged sitting on heels, a common yoga position of vajrasana. The name was suggested by Joseph Chusid, MD, in 1971, who reported a case of foot drop in a student who complained about increasing difficulty to walk, run, or climb stairs. The cause was thought to be injury to the common peroneal nerve, which is compressed and thereby deprived of blood flow while kneeling.
Yoga foot drop is a potential adverse effect of yoga, allegedly unmentioned by yoga teachers and books.
Asymptomatic anatomical variations in feet generally do not need treatment.
Conservative treatment for foot pain with Morton's toe may involve exercises or placing a flexible pad under the first toe and metatarsal; an early version of the latter treatment was once patented by Dudley Joy Morton. Restoring the Morton’s toe to normal function with proprioceptive orthotics can help alleviate numerous problems of the feet such as metatarsalgia, hammer toes, bunions, Morton's neuroma, plantar fasciitis, and general fatigue of the feet. Rare cases of disabling pain are sometimes treated surgically.
While genu valgum is often a symptom of genetic disorders it can be caused by poor nutrition. A major contributor to genu valgum is obesity, and far less commonly calcium and vitamin d deficiencies.
A foot deformity is a disorder of the foot that can be congenital or acquired.
Such deformities can include hammer toe, club foot, flat feet, pes cavus, etc.
The tibia or lower leg slightly or severely twists inward when walking or standing.
Pigeon toe (also known as metatarsus varus, metatarsus adductus, in-toe gait, intoeing or false clubfoot) is a condition which causes the toes to point inward when walking. It is most common in infants and children under two years of age and, when not the result of simple muscle weakness, normally arises from underlying conditions, such as a twisted shin bone or an excessive anteversion (femoral head is more than 15° from the angle of torsion) resulting in the twisting of the thigh bone when the front part of a person's foot is turned in.
Severe cases are considered a form of clubfoot.
Trench foot can be prevented by keeping the feet clean, warm, and dry. It was also discovered in World War I that a key preventive measure was regular foot inspections; soldiers would be paired and each made responsible for the feet of the other, and they would generally apply whale oil to prevent trench foot. If left to their own devices, soldiers might neglect to take off their own boots and socks to dry their feet each day, but if it were the responsibility of another, this became less likely. Later on in the war, instances of trench foot began to decrease, probably as a result of the introduction of the aforementioned measures; of wooden duckboards to cover the muddy, wet, cold ground of the trenches; and of the increased practice of troop rotation, which kept soldiers from prolonged time at the front.
Type II should be managed conservatively whereas type I and Ia requires to be treated surgically. Surgery involves four major steps:
- Development of the calcaneal part of the foot
- Repositioning of the navicular bone
- New adjustment of the ankle, and
- Various stabilization measures including the Grice operation and transposition of various tendons.
Turf toe is named from the injury being associated with playing sports on rigid surfaces such as artificial turf and is a fairly common injury among professional American football players. Often, the injury occurs when someone or something falls on the back of the calf while that leg's knee and tips of the toes are touching the ground. The toe is hyperextended and thus the joint is injured. Additionally, athletic shoes with very flexible soles combined with cleats that "grab" the turf will cause overextension of the big toe. This can occur on the lesser toes as well. It has also been observed in sports beyond American football, including soccer, basketball, rugby, volleyball, and tae kwon do. This is a primary reason why many athletes prefer natural grass to turf, because it is softer.
The bump itself is partly due to the swollen bursal sac or an osseous (bony) anomaly on the metatarsophalangeal joint. The larger part of the bump is a normal part of the head of the first metatarsal bone that has tilted sideways to stick out at its distal (far) end.
Bunions are commonly associated with a deviated position of the big toe toward the second toe, and the deviation in the angle between the first and second metatarsal bones of the foot. The small sesamoid bones found beneath the first metatarsal (which help the flexor tendon bend the big toe downwards) may also become deviated over time as the first metatarsal bone drifts away from its normal position. Osteoarthritis of the first metatarsophalangeal joint, diminished and/or altered range of motion, and discomfort with pressure applied to the bump or with motion of the joint, may all accompany bunion development. Atop of the first metatarsal head either medially or dorso-medially, there can also arise a bursa that when inflamed (bursitis), can be the most painful aspect of the process.
Diplopodia is a congenital anomaly in tetrapods that involves duplication of elements of the foot on the hind limb. It comes from the Greek roots diplo = "double" and pod = "foot". Diplopodia is often found in conjunction with other structural abnormalities and can be lethal. It is more extreme than polydactyly, the presence of extra digits.
A cubitus varus deformity is more cosmetic than limiting of any function, however internal rotation of the radius over the ulna may be limited due to the overgrowth of the humerus. This may be noticeable during an activity such as using a computer mouse.
Unlike frostbite, trench foot does not require freezing temperatures; it can occur in temperatures up to 16° Celsius (about 60° Fahrenheit) and within as little as 13 hours. Exposure to these environmental conditions causes deterioration and destruction of the capillaries and leads to morbidity of the surrounding flesh. Excessive sweating (hyperhidrosis) has long been regarded as a contributory cause; unsanitary, cold, and wet conditions can also cause trench foot.