Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Children in general are at greater risk because of their high activity levels. Children that have risk-prone behaviors are at even greater risk.
Over 2.5 million child abuse and neglect cases are reported every year, and thirty-five out of every hundred cases are physical abuse cases. Bone fractures are sometimes part of the physical abuse of children; knowing the symptoms of bone fractures in physical abuse and recognizing the actual risks in physical abuse will help forward the prevention of future abuse and injuries. Astoundingly, these abuse fractures, if not dealt with correctly, have a potential to lead to the death of the child.
Fracture patterns in abuse fractures that are very common with abuse are fractures in the growing part of a long bone (between the shaft and the separated part of the bone), fractures of the humeral shaft (long bone between the shoulder and elbow), ribs, scapula, outer end of the clavicle, and vertebra. Multiple fractures of varying age, bilateral fractures, and complex skull fractures are also linked to abuse. Fractures of varying ages occur in about thirteen percent of all cases.
Complications are likely to result in cases of excess blood loss or punctures to certain organs, possibly leading to shock. Swelling and bruising may result, more so in high-impact injuries. Pain in the affected areas may differ where severity of impact increases its likelihood and may radiate if symptoms are aggravated when one moves around.
Removable splints result in better outcomes than casting in children with torus fractures of the distal radius.
Several precautions may decrease the risk of getting a pelvic fracture. One study that examined the effectiveness of vitamin D supplementation found that oral vitamin D supplements reduced the risk of hip and nonvertebral fractures in older people. Certain types of equipment may help prevent pelvic fractures for the groups which are most at risk.
The greenstick fracture pattern occurs as a result of bending forces. Activities with a high risk of falling are risk factors. Non-accidental injury more commonly causes spiral (twisting) fractures but a blow on the forearm or shin could cause a green stick fracture. The fracture usually occurs in children and teens because their bones are flexible, unlike adults whose more brittle bones usually break.
Bone mineral density decreases with increasing age. Osteoporotic bone loss can be prevented through an adequate intake of vitamin C and vitamin D, coupled with exercise and by being a non-smoker. A study by Cheng et al. in 1997, showed that greater bone density indicated less risk for fractures in the calcaneus.
Hip fractures are seen globally and are a serious concern at the individual and population level. By 2050 it is estimated that there will be 6 million cases of hip fractures worldwide. One study published in 2001 found that in the US alone, 310,000 individuals were hospitalized due to hip fractures, which can account for 30% of Americans who were hospitalized that year. Another study found that in 2011, femur neck fractures were among the most expensive conditions seen in US hospitals, with an aggregated cost of nearly $4.9 billion for 316,000 inpatient hospitalizations. Rates of hip fractures is declining in the United States, possibly due to increased use of bisphosphonates and risk management. Falling, poor vision, weight and height are all seen as risk factors. Falling is one of the most common risk factors for hip fractures. Approximately 90% of hip fractures are attributed to falls from standing height.
Given the high morbidity and mortality associated with hip fractures and the cost to the health system, in England and Wales, the National Hip Fracture Database is a mandatory nationwide audit of care and treatment of all hip fractures.
Among those affected over the age of 65, 40% are transferred directly to long-term care facilities, long-term rehabilitation facilities, or nursing homes; most of those affected require some sort of living assistance from family or home-care providers. 50% permanently require walkers, canes, or crutches for mobility; all require some sort of mobility assistance throughout the healing process.
Among those affected over the age of 50, approximately 25% die within the next year due to complications such as blood clots (deep venous thrombosis, pulmonary embolism), infections, and pneumonia.
Patients with hip fractures are at high risk for future fractures including hip, wrist, shoulder, and spine. After treatment of the acute fracture, the risk of future fractures should be addressed. Currently, only 1 in 4 patients after a hip fracture receives treatment and work up for osteoporosis, the underlying cause of most of the fractures. Current treatment standards include the starting of a bisphosphonate to reduce future fracture risk by up to 50%.
Smokers generally have lower bone density than non-smokers, so have a much higher risk of fractures. There also is evidence that smoking delays bone healing.
A compound elevated skull fracture is a rare type of skull fracture where the fractured bone is elevated above the intact outer table of the skull. This type of skull fracture is always compound in nature. It can be caused during an assault with a weapon where the initial blow penetrates the skull and the underlying meninges and, on withdrawal, the weapon lifts the fractured portion of the skull outward. It can also be caused the skull rotating while being struck in a case of blunt force trauma, the skull rotating while striking an inanimate object as in a fall, or it may occur during transfer of a patient after an initial compound head injury.
Supracondylar humerus fractures account for 55%-75% of all elbow fractures. They most commonly occur in children between ages 5–8, because remodeling of bone in this age group causes a decreased supracondylar anteroposterior diameter.
A fracture in conjunction with an overlying laceration that tears the epidermis and the meninges—or runs through the paranasal sinuses and the middle ear structures, putting the outside environment in contact with the cranial cavity—is a compound fracture.
Compound fractures may either be clean or contaminated. Intracranial air (pneumocephalus) may occur in compound skull fractures.
The most serious complication of compound skull fractures is infection. Increased risk factors for infection include visible contamination, meningeal tear, loose bone fragments and presenting for treatment more than eight hours after initial injury.
Scapular fracture is present in about 1% of cases of blunt trauma and 3–5% of shoulder injuries. An estimated 0.4–1% of bone fractures are scapular fractures.
The injury is associated with other injuries 80–90% of the time. Scapular fracture is associated with pulmonary contusion more than 50% of the time. Thus when the scapula is fractured, other injuries such as abdominal and chest trauma are automatically suspected. People with scapular fractures often also have injuries of the ribs, lung, and shoulder. Pneumothorax (an accumulation of air in the space outside the lung), clavicle fractures, and injuries to the blood vessels are among the most commonly associated injuries. The forces involved in scapular fracture can also cause tracheobronchial rupture, a tear in the airways. Fractures that occur in the scapular body are the type most likely to be accompanied by other injuries; other bony and soft tissue injuries accompany these fractures 80–95% of the time. Associated injuries can be serious and potentially deadly, and usually it is the associated injuries, rather than the scapular fracture, that have the greatest effect on the outcome. Scapular fractures can also occur by themselves; when they do, the death rate (mortality) is not significantly increased.
The mean age of people affected is 35–45 years.
In children, whose bones are still developing, there are risks of either a growth plate injury or a greenstick fracture.
- A greenstick fracture occurs due to mechanical failure on the tension side. That is, since the bone is not so brittle as it would be in an adult, it does not completely fracture, but rather exhibits bowing without complete disruption of the bone's cortex in the surface opposite the applied force.
- Growth plate injuries, as in Salter-Harris fractures, require careful treatment and accurate reduction to make sure that the bone continues to grow normally.
- Plastic deformation of the bone, in which the bone permanently bends, but does not break, also is possible in children. These injuries may require an osteotomy (bone cut) to realign the bone if it is fixed and cannot be realigned by closed methods.
- Certain fractures mainly occur in children, including fracture of the clavicle and supracondylar fracture of the humerus.
Calcaneal fractures are often attributed to shearing stress adjoined with compressive forces combined with a rotary direction (Soeur, 1975). These forces are typically linked to injuries in which an individual falls from a height, involvement in an automobile accident, or muscular stress where the resulting forces can lead to the trauma of fracture. Overlooked aspects of what can lead to a calcaneal fracture are the roles of osteoporosis and diabetes.
Unfortunately, the prevention of falls and automobile accidents is limited and applies to unique circumstances that should be avoided. The risk of muscular stress fractures can be reduced through stretching and weight-bearing exercise, such as strength training. In addition, footwear can influence forces that may cause a calcaneal fracture and can prevent them as well. A 2012 study conducted by Salzler showed that the increasing trend toward minimalist footwear or running barefoot can lead to a variety of stress fractures including that of the calcaneus.
Falling and colliding with other people in a contact sport can also cause this fracture. Falling causes the weight of the body to force hyperextension. In full-contact sports such as American football and Rugby, diving for the ball can lead a player to land on his head, forcing the neck into hyperextension. The further piling of players on top of an injured player adds more weight and can lead to further occurrences of this fracture.
Clavicle fractures occur at 30–64 cases per 100,000 a year and are responsible for 2.6–5.0% of all fractures. This type of fracture occurs more often in males. About half of all clavicle fractures occur in children under the age of seven and is the most common pediatric fracture. Clavicle fractures involve roughly 5% of all fractures seen in hospital emergency admissions. Clavicles are the most commonly broken bone in the human body.
Considerable force is needed to cause a cervical fracture. Vehicle collisions and falls are common causes. A severe, sudden twist to the neck or a severe blow to the head or neck area can cause a cervical fracture.
Sports that involve violent physical contact carry a risk of cervical fracture, including American football, Goalkeeper (association football), ice hockey, rugby, and wrestling. Spearing an opponent in football or rugby, for instance, can cause a broken neck. Cervical fractures may also be seen in some non-contact sports, such as gymnastics, skiing, diving, surfing, powerlifting, equestrianism, mountain biking, and motor racing.
Certain penetrating neck injuries can also cause cervical fracture which can also cause internal bleeding among other complications.
Hanging also incurs a cervical fracture.
Olecranon fractures are rare in children, constituting only 5 to 7% of all elbow fractures. This is because in early life, olecranon is thick, short and much stronger than the lower extremity of the humerus.
However, olecranon fractures are a common injury in adults. This is partly due to its exposed position on the point of the elbow.
In most cases, patients are discharged from an emergency department with pain medicine and a cast or sling. These fractures are typically minor and heal naturally over the course of a few weeks. Fractures of the proximal region, especially among elderly patients, may limit future shoulder activity. Severe fractures are usually resolved with surgical intervention, followed by a period of healing using a cast or sling. Severe fractures often cause long-term loss of physical ability. Complications in the recovery process of severe fractures include osteonecrosis, malunion or nonunion of the fracture, stiffness, and rotator cuff dysfunction, which require additional intervention in order for the patient to fully recover.
Distal radius fractures are the most common fractures seen in adults, with incidence in females outnumbering incidence in males by a factor of 2-3. Men who sustain distal radius fractures are usually younger, generally in their fifth decade (vs. seventh decade in females). The elderly are more susceptible because of the osteopenia and osteoporosis commonly seen in this age group. The majority of these fractures are extra-articular (i.e. not involving the joint).
This is also a common injury in children which may involve the growth plate (Salter-Harris fracture).
In young adults, the injury is often severe as a greater force is necessary to produce the injury.
Jefferson fracture is often caused by an impact or load on the back of the head, and are frequently associated with diving into shallow water, impact against the roof of a vehicle and falls, and in children may occur due to falls from playground equipment. Less frequently, strong rotation of the head may also result in Jefferson fractures.
Jefferson fractures are extremely rare in children, but recovery is usually complete without surgery.
Colles fractures occur in all age groups, although certain patterns follow an age distribution.
- In the elderly, because of the weaker cortex, the fracture is more often extra-articular.
- Younger individuals tend to require a higher energy force to cause the fracture and tend to have more complex intra-articular fractures. In children with open epiphyses, an equivalent fracture is the "epiphyseal slip", as can be seen in other joints, such as a slipped capital femoral epiphysis in the hip. This is a Salter I or II fracture with the deforming forces directed through the weaker epiphyseal plate.
- More common in women because of post-menopausal osteoporosis.
The healing time for a routine mandible fractures is 4–6 weeks whether MMF or rigid internal fixation (RIF) is used. For comparable fractures, patients who received MMF will lose more weight and take longer to regain mouth opening, whereas, those who receive RIF have higher infection rates.
The most common long-term complications are loss of sensation in the mandibular nerve, malocclusion and loss of teeth in the line of fracture. The more complicated the fracture (infection, comminution, displacement) the higher the risk of fracture.
Condylar fractures have higher rates of malocclusion which in turn are dependent on the degree of displacement and/or dislocation. When the fracture is intracapsular there is a higher rate of late-term osteoarthritis and the potential for ankylosis although the later is a rare complication as long as mobilization is early. Pediatric condylar fractures have higher rates of ankylosis and the potential for growth disturbance.
Rarely, mandibular fracture can lead to Frey's syndrome.