Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The smuts are multicellular fungi characterized by their large numbers of teliospores. The smuts get their name from a Germanic word for dirt because of their dark, thick-walled, and dust-like teliospores. They are mostly Ustilaginomycetes (of the class Teliomycetae, subphylum Basidiomycota) and can cause plant disease. The smuts are grouped with the other basidiomycetes because of their commonalities concerning sexual reproduction.
Smuts are cereal and crop pathogens that most notably affect members of the grass family ("Poaceae"). Economically important hosts include maize, barley, wheat, oats, sugarcane, and forage grasses. They eventually hijack the plants' reproductive systems, forming galls which darken and burst, releasing fungal teliospores which infect other plants nearby. Before infection can occur, the smuts need to undergo a successful mating to form dikaryotic hyphae (two haploid cells fuse to form a dikaryon).
Sugarcane smut or "Ustilago scitaminea Sydow" is caused by the fungus "Sporisorium scitamineum"; smut was previously known as "Ustilago scitaminea". The smut 'whip' is a curved black structure which emerges from the leaf whorl, and which aids in the spreading of the disease. Sugarcane smut causes significant losses to the economic value of a sugarcane crop. Sugarcane smut has recently been found in the eastern seaboard areas of Australia, one of the world's highest-yielding sugar areas.
For the sugarcane crop to be infected by the disease, large spore concentrations are needed. The fungi uses its "smut-whip" to ensure that the disease is spread to other plants, which usually occurs over a time period of three months. As the inoculum is spread, the younger sugarcane buds just coming out of the soil will be the most susceptible. Because water is necessary for spore germination, irrigation has been shown to be a factor in spreading the disease. Therefore, special precautions need to be taken during irrigation to prevent spreading of the smut.
Another way to prevent the disease from occurring in the sugarcane is to use fungicide. This can be done by either pre-plant soaking or post-plant spraying with the specific fungicide. Pre-plant soaking has been proven to give the best results in preventing the disease, but post-plant spraying is a practical option for large sugarcane cultivations.
Some herbaceous hosts naturally have the Cherry X Disease. Once the spreads to the cherry hosts, with the help of the mountain leafhoppers, the cherry leafhoppers can spread the disease around to other woody hosts. Here are some approaches at management with each host type:
There are numerous steps one has to take to try to manage the disease as best as possible. The aim is at prevention because once the pathogen reaches the cherry trees, disease will surely ensue and there is no cure or remedy to prevent the loss of fruit production as well as the ultimate death of the tree.
In laboratory animals, prevention includes a low-stress environment, an adequate amount of nutritional feed, and appropriate sanitation measurements. Because animals likely ingest bacterial spores from contaminated bedding and feed, regular cleaning is a helpful method of prevention. No prevention methods are currently available for wild animal populations.
White band disease (Acroporid white syndrome) is a coral disease that affects acroporid corals and is distinguishable by the white band of dead coral tissue that it forms. The disease completely destroys the coral tissue of Caribbean acroporid corals, specifically elkhorn coral ("Acropora palmata") and staghorn coral ("A. cervicornis"). The disease exhibits a pronounced division between the remaining coral tissue and the exposed coral skeleton. These symptoms are similar to white plague, except that white band disease is only found on acroporid corals, and white plague has not been found on any acroporid corals. It is part of a class of similar disease known as "white syndromes", many of which may be linked to species of "Vibrio" bacteria. While the pathogen for this disease has not been identified, "Vibrio carchariae" may be one of its factors. The degradation of coral tissue usually begins at the base of the coral, working its way up to the branch tips, but it can begin in the middle of a branch.
To date, CKDu (MeN) causes remain undetermined and debatable; nevertheless the number of cases could lead to the application of a precautionary principles from a humanitarian perspective. Due to the fact that the Mesoamerican nephropathy is regarded as a multifactorial disease the experimental design of comparative study should take following logical setting into account.
Multifactorial problem. Assume that a disease is definitely caused by A,B,C. The disease will develop if at least 2 risk factors are present in a certain region.
- formula_1 no prevalence of disease in region 1
- A no prevalence of disease in region 2
- B no prevalence of disease in region 3
- C no prevalence of disease in region 4
- A,B prevalence of disease in region 5
- B,C prevalence of disease in region 6
- C,A prevalence of disease in region 7
- A,B,C prevalence of disease in region 8
Removing the risk factor A in the experimental group in comparison to control group will lead to changes in the outbreak of the disease in only 2 of 8 combinatorically possible regions, even if we define A as a relevant risk factor in this theoretical setting. The same is true if the experimental design adds in a comparative study the risk factor A to the regions in the experimental group in comparison to the control group.
If the difference in experimental and control are 2 risk factors (adding or removing two risk factor e.g. A,B in the control group), then 4 regions will show a differences in prevalence of the disease, with the disadvantage that the experimental design cannot clarify if one or both risk factors A and B are contributing to the progression and prevalence of the disease.
Beside this logical analysis of a multifactorial setting there is space for further investigation, e.g.: Leptospirosis has been suggested as a possible contributing factor and oceanic nephrotoxic algae or agents have also been brought to the chart of possibilities as a culprit for this unusual form of kidney damage..
Assessment of the mentioned risk factors and their possible synergism will depend on more and better research.
Currently, antibiotic drugs such as penicillin or tetracycline are the only effective methods for disease treatment. Within wild populations, disease control consists of reducing the amount of bacterial spores present in the environment. This can be done by removing contaminated carcasses and scat.
The same position supported by the authors of one study developed in El Salvador, but the El Salvadoran study did not find an increased odds ratio for CKD in people exposed to agrochemical products, or direct evidence linking it to pesticides. Other studies from Sri Lanka have showed that chronic exposure of people in agrochemically laden fields to low levels of cadmium through the food chain and also to pesticides could be responsible for significantly higher urinary excretion of cadmium in individuals with CKDu, but urinary cadmium excretion is increased in all forms of CKD, and cadmium nephropathy is highly proteinuric while MeN is not. Based on that hypothetical possibility, Sri Lanka has banned many of these chemicals, and El Salvador has similar legislation pending, waiting for direct evidence linking the disease to the use of agrochemicals in the Mesoamerican region.
The import and production of agrochemicals can be quantified. In addition to the amount of agrochemicals the workflow in which agrochemicals are applied are relevant for the exposure of workers to agrochemical (application with tractor or manual work or application of self-protection measures). CKDu has not been reported among workers laboring under supposedly similar heat stress in other tropical areas of the world, such as Brazil, Cuba or Jamaica, where the same pesticides may not have been used in the same fashion or quantities as in Mesoamerica. However, heat stress measurements have not been assessed in these countries and cannot be compared, and CKD cases could be underreported, just like in the Mesoamerican region before the first description of the disease back in 2002. In any case, there are important differences between these Caribbean and Atlantic countries and the Mesoamerican Pacific coastlands, differences including
- level of agroindustrial mechanization,
- working conditions (access to drinking water and rest in shady spots),
- easy access to NSAIDs without prescription,
- and healthcare accessibility, and
- marked ethnic differences - because the Mesoamerican Pacific Ocean coastland has little or no black ethnicity influence, being mainly Native American "mestizos".
A large (nearly 38,000 workers, 5 year follow up) prospective study from Thailand in 2012 found a 5-fold increased risk (adjusted odds ratio) for CKD in heat stress exposed workers with physical jobs, so the disease could be more prevalent around the globe than first thought, and needs a closer look. The heat stress hypothesis needs to be more deeply considered and examined.
White band disease causes the affected coral tissue to decorticate off the skeleton in a white uniform band for which the disease was given its name. The band, which can range from a few millimeters to 10 centimeters wide, typically works its way from the base of the coral colony up to the coral branch tips. The band progresses up the coral branch at an approximate rate of 5 millimeters per day, causing tissue loss as it works its way to the branch tips. After the tissue is lost, the bare skeleton of the coral may later by colonized by filamentous algae.
There are two variants of white band disease, type I and type II. In Type I of white band disease, the tissue remaining on the coral branch shows no sign of coral bleaching, although the affected colony may appear lighter in color overall. However, a variant of white band disease, known simply as white band disease Type II, which was found on Staghorn colonies near the Bahamas, does produce a margin of bleached tissue before it is lost. Type II of white band disease can be mistaken for coral bleaching. By examining the remaining living coral tissue for bleaching, one can delineate which type of the disease affects a given coral.
Tropical ulcer has been described as a disease of the 'poor and hungry'; it may be that slowly improving socioeconomic conditions and nutrition account for its decline. Urbanization of populations could be another factor, as tropical ulcer is usually a rural problem. More widespread use of shoes and socks also provides protection from initiating trauma. Despite this, susceptible individuals still develop tropical ulcers. Sometimes outbreaks can occur; one was recorded in Tanzania in sugarcane workers cutting the crops while barefoot. Tropical ulcers can also occur to the visitors of tropics. The disease is most common in native laborers and in schoolchildren of the tropics and subtropics during the rainy season and is caused in many instances by the bites of insects, poor hygiene, and pyogenic infections. Males are more commonly infected than females.
Adequate footwear is important to prevent trauma. General good health and nutrition also reduce ulcer risk. Adequate and prompt cleansing and treatment of ankle and leg skin breaks is also important. Improving hygiene and nutrition may help to prevent tropical ulcers.
The cause of Grover's disease is unknown. Suspected triggers of disease activity include heat and sweating, sunlight, and adverse reaction to medications as well as ionizing radiation, end-stage renal disease/hemodialysis, and mechanical irritation or prolonged bed rest.
Some cases of Grover's disease have been associated with medications such as sulfadoxine-pyrimethamine, ribavirin, cetuximab, and interleukin-4 [1,8-15]. One series of 300 patients with Grover's disease reported an association with other coexisting dermatoses including atopic dermatitis, contact dermatitis, and xerosis cutis. Finally, smaller series have detailed an association with pyoderma gangrenosum, bacterial and viral infections, and occasionally, malignancies.
The prevalence and incidence of Grover's disease have not been firmly established. In a study from Switzerland, Grover's disease was diagnosed in just 24 of more than 30,000 skin biopsies [4]. Grover's disease is mainly seen in males over the age of forty.
Grover's disease affects chiefly white adults in the fifth decade or later, and appears to be around 1.6 to 2.1 times more common in men than in women. Grover's disease appears less commonly in darker-skinned individuals.
Morbidity and mortality range from both extremes as the significance correlate with the underlying systemic disease.
Hairy tongue occurs in about 0.5% of adults. However, the prevalence is variable depending on the population studied.
Prevention is through use of Stock coryza-free birds. In other areas culling of the whole flock is a good means of the disease control. Bacterin also is used at a dose of two to reduce brutality of the disease. Precise exposure has also has been used but it should be done with care. Vaccination of the chicks is done in areas with high disease occurrence. Treatment is done by using antibiotics such as erythromycin, Dihydrostreptomycin, Streptomycin sulphonamides, tylosin and Flouroquinolones .
The cause is uncertain, but it is thought to be caused by accumulation of epithelial squames and proliferation of chromogenic (i.e., color-producing) microorganisms. There may be an increase in keratin production or a decrease in normal desquamation (shedding of surface epithelial cells). Many people with BHT are heavy smokers. Other possible associated factors are poor oral hygiene, general debilitation, hyposalivation (i.e., decreased salivary flow rate), radiotherapy, overgrowth of fungal or bacterial organisms, and a soft diet. Occasionally, BHT may be caused by the use of antimicrobial medications (e.g., tetracyclines), or oxidizing mouthwashes or antacids. A soft diet may be involved as normally food has an abrasive action on the tongue, which keeps the filiform papillae short. Pellagra, a condition caused by a vitamin deficiency, may cause a thick greyish fur to develop on the dorsal tongue, along with other oral signs.
Transient surface discoloration of the tongue and other soft tissues in the mouth can occur in the absence of hairy tongue. Causes include smoking (or betel chewing), some foods and beverages (e.g., coffee, tea or liquorice), and certain medications (e.g., chlorhexidine, iron salts, or bismuth subsalicylate (Pepto-Bismol)).
There seems to be beneficial responses to clindamycin therapy as the lesions regress. This leads to the hypothesis that microorganisms may be playing a role in the initial stages of Kyrle disease.
A family with Kyrle disease were examined which their skin lesions were benign. However, when three of the young adult members were closely examined, they had posterior subcapsular cataracts and two of those three developed multiple tiny yellow-brown anterior stromal corneal opacities. In order to determine if there is any correlation between Kyrle disease and the ocular observations, more cases of Kyrle disease are to be analyzed.
All in all, since Kyrle disease is relatively rare, more cases need to be studied and analyzed in order to understand the underlying pathogenesis and to improve the management of the disease.
The reservoirs of the disease are carrier chickens which could be health but harboring the disease or chronically sick chickens. The disease affects all ages of chickens. The disease can persist in the flock for 2-3 weeks and signs of the disease are seen between 1–3 days post infection. Transmission of the disease is through direct interaction, airborne droplets and drinking contaminated water. Chicken having infection and those carriers contribute highly to the disease transmission
Untreated, the disease has a mortality rate upwards of 90%. Cats treated in the early stages can have a recovery rate of 80–90%. Left untreated, the cats usually die from severe malnutrition or complications from liver failure. Treatment usually involves aggressive feeding through one of several methods.
Cats can have a feeding tube inserted by a veterinarian so that the owner can feed the cat a liquid diet several times a day. They can also be force-fed through the mouth with a syringe. If the cat stops vomiting and regains its appetite, it can be fed in a food dish normally. The key is aggressive feeding so the body stops converting fat in the liver. The cat liver has a high regeneration rate and the disease will eventually reverse assuming that irreparable damage has not been done to the liver.
The best method to combat feline hepatic lipidosis is prevention and early detection. Obesity increases the chances of onset. In addition, if a cat stops eating for 1–2 days, it should be taken to a vet immediately. The longer the disease goes untreated, the higher the mortality rate.
The disease is regarded as extremely rare, with an incidence (new number of cases per year) of one case per million people. The patients are predominantly male (86% in a survey of American patients), although in some countries the rate of women receiving a diagnosis of Whipple's disease has increased in recent years. It occurs predominantly in those of Caucasian ethnicity, suggesting a genetic predisposition in that population.
"T. whipplei" appears to be an environmental organism that is commonly present in the gasterointestinal tract but remains asymptomatic. Several lines of evidence suggest that some defect—inherited or acquired—in immunity is required for it to become pathogenic. The possible immunological defect may be specific for "T. whipplei", since the disease is not associated with a substantially increased risk of other infections.
The disease is usually diagnosed in middle age (median 49 years). Studies from Germany have shown that age at diagnosis has been rising since the 1960s.
Pogosta disease is a viral disease, established to be identical with other diseases, Karelian fever and Ockelbo disease. The names are derived from the words Pogosta, Karelia and Ockelbo, respectively.
The symptoms of the disease include usually rash, as well as mild fever and other flu-like symptoms; in most cases the symptoms last less than 5 days. However, in some cases, the patients develop a painful arthritis. There are no known chemical agents available to treat the disease.
It has long been suspected that the disease is caused by a Sindbis-like virus, a positive-stranded RNA virus belonging to the Alphavirus genus and family Togaviridae. In 2002 a strain of Sindbis was isolated from patients during an outbreak of the Pogosta disease in Finland, confirming the hypothesis.
This disease is mainly found in the Eastern parts of Finland; a typical Pogosta disease patient is a middle-aged person who has been infected through a mosquito bite while picking berries in the autumn. The prevalence of the disease is about 100 diagnosed cases every year, with larger outbreaks occurring in 7-year intervals.
One of the reasons a cat may stop eating is separation anxiety and the emotional stress that results. Moving, gaining or losing housemates or pets, going on vacation, or prolonged boarding are all common situations that pet owners report just prior to the onset of the disease, but it may develop without these conditions existing. Obesity is known to increase the risk of hepatic lipidosis; however, there is no known "official" cause of the disease. Severe anorexia usually precedes the onset of the disease. When the cat has no energy from eating, the liver must metabolize fat deposits in the body into usable energy to sustain life. The cat liver, however, is poor at metabolizing fat, causing a buildup of fat in the cells of the liver, leading to fatty liver. At this point the disease can be diagnosed; however, it will often not be diagnosed, and many animals are euthanized due to improper or no diagnosis.
Urbach–Wiethe disease is very rare; there are fewer than 300 reported cases in medical literature. Although Urbach–Wiethe disease can be found worldwide, almost a quarter of reported diagnoses are in South Africa. Many of these are in patients of Dutch, German, and Khoisan ancestry. This high frequency is thought to be due to the founder effect. Due to its recessive genetic cause and the ability to be a carrier of the disease without symptoms, Urbach–Wiethe disease often runs in families. In some regions of South Africa, up to one in 12 individuals may be carriers of the disease. Most of the case studies involving Urbach–Wiethe disease patients involve only one to three cases and these cases are often in the same family. Due to its low incidence, it is difficult to find a large enough number of cases to adequately study the disease.