Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Lujan–Fryns syndrome is a rare X-linked dominant syndrome, and is therefore more common in males than females. Its prevalence within the general population has not yet been determined.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.
While not always pathological, it can present as a birth defect in multiple syndromes including:
- Catel–Manzke syndrome
- Bloom syndrome
- Coffin–Lowry syndrome
- congenital rubella
- Cri du chat syndrome
- DiGeorge's syndrome
- Ehlers-Danlos syndrome
- fetal alcohol syndrome
- Hallermann-Streiff syndrome
- Hemifacial microsomia (as part of Goldenhar syndrome)
- Juvenile idiopathic arthritis
- Marfan syndrome
- Noonan syndrome
- Pierre Robin syndrome
- Prader–Willi syndrome
- Progeria
- Russell-Silver syndrome
- Seckel syndrome
- Smith-Lemli-Opitz syndrome
- Treacher Collins syndrome
- Trisomy 13 (Patau syndrome)
- Trisomy 18 (Edwards syndrome)
- Wolf–Hirschhorn syndrome
- X0 syndrome (Turner syndrome)
Nager syndrome is thought to be caused by haploinsufficiency of the spliceosomal factor SF3B4.
22q11.2 deletion syndrome was estimated to affect between one in 2000 and one in 4000 live births. This estimate is based on major birth defects and may be an underestimate, because some individuals with the deletion have few symptoms and may not have been formally diagnosed. It is one of the most common causes of mental retardation due to a genetic deletion syndrome.
The prevalence of 22q11.2DS has been expected to rise because of multiple reasons: (1) Thanks to surgical and medical advances, an increasing number of people are surviving heart defects associated with the syndrome. These individuals are in turn having children. The chances of a 22q11.2DS patient having an affected child is 50% for each pregnancy; (2) Parents who have affected children, but who were unaware of their own genetic conditions, are now being diagnosed as genetic testing become available; (3) Molecular genetics techniques such as FISH (fluorescence in situ hybridization) have limitations and have not been able to detect all 22q11.2 deletions. Newer technologies have been able to detect these atypical deletions.
Recently, the syndrome has been estimated to affect up to one in 2000 live births. Testing for 22q11.2DS in over 9500 pregnancies revealed a prevalence rate of 1/992.
Currently there are only around 26 people in the world that are known to have this rare condition. Inheritance is thought to be X-linked recessive.
In a newborn boy thought to have Fryns syndrome, Clark and Fenner-Gonzales (1989) found mosaicism for a tandem duplication of 1q24-q31.2. They suggested that the gene for this disorder is located in that region. However, de Jong et al. (1989), Krassikoff and Sekhon (1990), and Dean et al. (1991) found possible Fryns syndrome associated with anomalies of chromosome 15, chromosome 6, chromosome 8(human)and chromosome 22, respectively. Thus, these cases may all represent mimics of the mendelian syndrome and have no significance as to the location of the gene for the recessive disorder.
By array CGH, Slavotinek et al. (2005) screened patients with DIH and additional phenotypic anomalies consistent with Fryns syndrome for cryptic chromosomal aberrations. They identified submicroscopic chromosome deletions in 3 probands who had previously been diagnosed with Fryns syndrome and had normal karyotyping with G-banded chromosome analysis. Two female infants were found to have microdeletions involving 15q26.2 (see 142340), and 1 male infant had a deletion in band 8p23.1 (see 222400).
Nager acrofacial dysostosis is a genetic congenital anomaly syndrome. Nager syndrome displays several or all of the following characteristics: underdevelopment of the cheek and jaw area, down-sloping of the opening of the eyes, lack or absence of the lower eyelashes, kidney or stomach reflux, hammer toes, shortened soft palate, lack of development of the internal and external ear, possible cleft palate, underdevelopment or absence of the thumb, hearing loss (see hearing loss with craniofacial syndromes) and shortened forearms, as well as poor movement in the elbow, and may be characterized by accessory tragi. Occasionally, affected individuals develop vertebral anomalies such as scoliosis. The inheritance pattern is said to be autosomal but there are arguments as to whether it is autosomal dominant or autosomal recessive. Most cases tend to be sporadic. Nager syndrome is also linked to five other similar syndromes: Miller syndrome, Treacher Collins, Pierre Robin, Genee-Wiedemann, and Franceschetti-Zwahlen-Klein.
Patau syndrome is the result of trisomy 13, meaning each cell in the body has three copies of chromosome 13 instead of the usual two. A small percentage of cases occur when only some of the body's cells have an extra copy; such cases are called mosaic Patau.
Patau syndrome can also occur when part of chromosome 13 becomes attached to another chromosome (translocated) before or at conception in a Robertsonian translocation. Affected people have two copies of chromosome 13, plus extra material from chromosome 13 attached to another chromosome. With a translocation, the person has a partial trisomy for chromosome 13 and often the physical signs of the syndrome differ from the typical Patau syndrome.
Most cases of Patau syndrome are not inherited, but occur as random events during the formation of reproductive cells (eggs and sperm). An error in cell division called non-disjunction can result in reproductive cells with an abnormal number of chromosomes. For example, an egg or sperm cell may gain an extra copy of the chromosome. If one of these atypical reproductive cells contributes to the genetic makeup of a child, the child will have an extra chromosome 13 in each of the body's cells. Mosaic Patau syndrome is also not inherited. It occurs as a random error during cell division early in fetal development.
Patau syndrome due to a translocation can be inherited. An unaffected person can carry a rearrangement of genetic material between chromosome 13 and another chromosome. This rearrangement is called a balanced translocation because there is no extra material from chromosome 13. Although they do not have signs of Patau syndrome, people who carry this type of balanced translocation are at an increased risk of having children with the condition.
SCS is the most common craniosynostosis syndrome and affects 1 in every 25,000 to 50,000 individuals. It occurs in all racial and ethnic groups, and affects males and females equally. If a parent carries a copy of the SCS gene mutation, then there is a 50% chance their child will also carry a copy of the gene mutation, in which case, the child may or may not show signs of SCS. There is also a 50% chance their child will have two working copies of the gene, and would therefore, not have SCS. If both parents carry a single copy of the SCS gene mutation, then there is a 25% chance their child will have two gene mutation copies (so child would develop severe SCS), a 25% chance their child would have two normal copies of the gene (so would be completely normal), and a 50% chance their child would carry one gene mutation copy and 1 normal copy (so child may or may not display SCS). In rare situations, two normal parents can have a child with SCS due to a "de novo" mutation. The exact cause of the "de novo" mutation is unknown, but it doesn't seem to be related to anything that the parents did or didn't do during the pregnancy. SCS due to a "de novo" mutation is so rare that the proportion of past cases is unknown.
About half of all 'marker' chromosomes are idic(15) but idic(15) in itself is one of the rare chromosome abnormalities. Incidence at birth appears to be 1 in 30,000 with a sex ratio of almost 1:1; however, since dysmorphic features are absent or subtle and major malformations are rare, chromosome analysis may not be thought to be indicated, and some individuals, particularly in the older age groups, probably remain undiagnosed. There are organizations for families with idic(15) children that offer extensive information and support.
it is mainly associated with talon cusp. It is developmental anomaly of shape of teeth
Kleefstra syndrome affects males and females equally and approximately, 75% of all documented cases are caused by Eu-HMTase1 disruptions while only 25% are caused by 9q34.3 deletions. There are no statistics on the effect the disease has on life expectancy due to the lack of information available.
The varied signs and symptoms of Duane-radial ray syndrome often overlap with features of other disorders.
- For example, acro-renal-ocular syndrome is characterized by Duane anomaly and other eye abnormalities, radial ray malformations, and kidney defects. Both conditions can be caused by mutations in the same gene. Based on these similarities, researchers are investigating whether Duane-radial ray syndrome and acro-renal-ocular syndrome are separate disorders or part of a single syndrome with many possible signs and symptoms.
- The features of Duane-radial ray syndrome also overlap with those of a condition called Holt-Oram syndrome; however, these two disorders are caused by mutations in different genes.
Frasier syndrome is a urogenital anomaly associated with the "WT1" (Wilms tumor 1 gene) gene.
It was first characterized in 1964.
An individual exhibiting intellectual disability and other symptoms similar to LFS was found to have a terminal deletion of the subtelomeric region in the short arm of chromosome 5. Deletion of this area of chromosome 5 is associated with intellectual disability, psychotic behavior, autism, macrocephaly and hypernasal-like speech, as well as the disorder Cri du chat syndrome. Fryns (2006) suggests a detailed examination of chromosome 5 with FISH should be performed as part of the differential diagnosis of LFS.
Mutations in the "UPF3B" gene, also found on the X chromosome, are another cause of X-linked intellectual disability. "UPF3B" is part of the nonsense-mediated mRNA decay (NMD) complex, which performs mRNA surveillance, detecting mRNA sequences that have been erroneously truncated (shortened) by the presence of nonsense mutations. Mutations in "UPF3B" alter and prevent normal function of the NMD pathway, resulting in translation and expression of truncated mRNA sequences into malfunctioning proteins that can be associated with developmental errors and intellectual disability. Individuals from two families diagnosed with LFS and one family with FGS were found to have mutations in "UPF3B", confirming that the clinical presentations of the different mutations can overlap.
It can be detected by the naked eye as well as dental or skull X-Ray testing.
Fryns syndrome is an autosomal recessive multiple congenital anomaly syndrome that is usually lethal in the neonatal period. Fryns (1987) reviewed the syndrome.
In 2008 researchers found autosomal dominant mutations in the RET and GDNF genes to be linked to renal agenesis in unrelated stillborn fetuses through PCR and direct sequence analysis . In the study, DNA from 33 stillborn fetuses were sequenced for mutations in RET, GDNF and GFRA1. Nineteen of the fetuses had BRA, ten had URA and 4 had congenital renal dysplasia. Seven of the 19 BRA fetuses were found to have a mutation in the RET gene (37%), while two of the ten URA fetuses did (20%). One of the URA fetuses had two RET mutations and one GDNF mutation. There were no GFRA1 mutations found.
However, the results of Skinner et al. study were questioned by a more recent study with a larger number of cases . In this study 105 fetuses were analyzed. Sixty-five fetuses had BRA while 24 had URA with an abnormal contralateral kidney. Mutations in the RET gene were only found in seven of the fetuses (6.6%).
In 2014 researchers found autosomal recessive mutations in ITGA8 in three members of two unrelated families utilizing Exome Sequencing . One of the families was consanguineous.
In 2017 researchers identified heritable autosomal dominant mutations in the gene GREB1L in two unrelated families as being the cause of both BRA and URA utilizing Exome Sequencing and direct sequencing analysis . This is the first reported genetic lesion implicated in the activation of Retinoic Acid Receptor (RAR) Targets that has been associated with renal agenesis in humans. The researchers found two different GREB1L mutations, each being unique to their respective pedigrees. In total, there were 23 individuals analyzed between the two families, four of which had BRA and five of which had URA. GREB1L mutations were identified in all of the affected individuals as well as in three unaffected family members, demonstrating incomplete penetrance and variable expressivity.
There are several hundred to perhaps several thousand genes that, if they had the right kind of mutation, could lead to renal agenesis in humans. It is possible that each individual or family experiencing renal agenesis has a unique gene or genetic mutation causing the condition due to the fact that there are so many genes that are critical to proper renal development. See Rosenblum S et al. for an excellent review of Congenital abnormalities of the Kidney and Urinary Tract
Chromosomal anomalies have been associated with BRA in certain cases (chromosomes 1, 2, 5 and 21), but these anomalies were not inherited and have not been observed in subsequent cases. Additionally, neither extreme substance abuse or environmental factors (high power line, mercury, ground water issues, etc.) have been reported to be linked to an increased incidence of BRA or other cause of Potter sequence. However, renal agenesis and other causes of oligohydramnios sequence have been linked to a number of other conditions and syndromes to include Down syndrome, Kallmann syndrome, branchio-oto-renal syndrome and others.
Frasier syndrome is inherited in an autosomal dominant fashion, indicating the need for only one mutated allele in a cell to lead to expression of the disease. Mutations predominantly occur , allowing for expression in an individual that has no family history of it. The mutations occur during gamete formation or early in embryogenesis.
First arch syndromes are congenital defects caused by a failure of neural crest cells to migrate into the first pharyngeal arch. They can produce facial anomalies. Examples of first arch syndromes include Treacher Collins syndrome and Pierre Robin syndrome.
Ethmocephaly is a type of cephalic disorder caused by holoprosencephaly. Ethmocephaly is the least common facial anomaly. It consists of a proboscis separating narrow-set eyes with an absent nose and microphthalmia (abnormal smallness of one or both eyes). Cebocephaly, another facial anomaly, is characterized by a small, flattened nose with a single nostril situated below incomplete or underdeveloped closely set eyes.
The least severe in the spectrum of facial anomalies is the median cleft lip, also called premaxillary agenesis.
Although the causes of most cases of holoprosencephaly remain unknown, some may be due to dominant or chromosome causes. Such chromosomal anomalies as trisomy 13 and trisomy 18 have been found in association with holoprosencephaly, or other neural tube defects. Genetic counseling and genetic testing, such as amniocentesis, is usually offered during a pregnancy if holoprosencephaly is detected. The recurrence risk depends on the underlying cause. If no cause is identified and the fetal chromosomes are normal, the chance to have another pregnancy affected with holoprosencephaly is about 6%.
There is no treatment for holoprosencephaly and the prognosis for individuals with the disorder is poor. Most of those who survive show no significant developmental gains. For children who survive, treatment is symptomatic. It is possible that improved management of diabetic pregnancies may help prevent holoprosencephaly, however there is no means of primary prevention.
Turner syndrome occurs in between one in 2000 and one in 5000 females at birth.
Approximately 99 percent of fetuses with Turner syndrome spontaneously terminate during the first trimester. Turner syndrome accounts for about 10 percent of the total number of spontaneous abortions in the United States.
Prenatal diagnosis of Saethre-Chotzen Syndrome in high risk pregnancies is doable, but very uncommon and rarely performed. Furthermore, this is only possible if the mutation causing the disease has already been identified within the family genome. There are a few different techniques in which prenatal testing can be carried out. Prenatal testing is usually performed around 15–18 weeks, using amniocentesis to extract DNA from the fetus's cells. Prenatal testing can also be performed during weeks 10-12 using chorionic villus sampling (CVS) to extract DNA from the fetus. Recently, there has been an increased interest in utilizing ultrasound equipment in order to detect fetal skull abnormalities due to immature fusion of the cranial sutures.
Rubinstein–Taybi syndrome (RTS), also known as broad thumb-hallux syndrome or Rubinstein syndrome, is a condition characterized by short stature, moderate to severe learning difficulties, distinctive facial features, and broad thumbs and first toes. Other features of the disorder vary among affected individuals.
People with this condition have an increased risk of developing noncancerous and cancerous tumors, leukemia, and lymphoma. This condition is sometimes inherited as an autosomal dominant pattern and is uncommon, many times it occurs as a de novo (not inherited) occurrence, it occurs in an estimated 1 in 125,000-300,000 births.