Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Risk factors for drug allergies can be attributed to the drug itself or the characteristics of the patient. Drug-specific risk factors include the dose, route of administration, duration of treatment, repetitive exposure to the drug, and concurrent illnesses. Host risk factors include age, sex, atopy, specific genetic polymorphisms, and inherent predisposition to react to multiple unrelated drugs (multiple drug allergy syndrome).
A drug allergy is more likely to develop with large doses and extended exposure.
It is estimated that 2—3 percent of hospitalised patients are affected by a drug eruption, and that serious drug eruptions occur in around 1 in 1000 patients.
When a medication causes an allergic reaction, it is called an allergen. The following is a short list of the most common drug allergens:
- Antibiotics
- Penicillin
- Sulfa drugs
- Tetracycline
- Analgesics
- Codeine
- Non-steroidal anti-inflammatory drugs (NSAIDs)
- Antiseizure
- Phenytoin
- Carbamazepine
The culprit can be both a prescription drug or an over-the-counter medication.
Examples of common drugs causing drug eruptions are antibiotics and other antimicrobial drugs, sulfa drugs, nonsteroidal anti-inflammatory drugs (NSAIDs), biopharmaceuticals, chemotherapy agents, anticonvulsants, and psychotropic drugs. Common examples include photodermatitis due to local NSAIDs (such as piroxicam) or due to antibiotics (such as minocycline), fixed drug eruption due to acetaminophen or NSAIDs (Ibuprofen), and the rash following ampicillin in cases of mononucleosis.
Certain drugs are less likely to cause drug eruptions (rates estimated to be ≤3 per 1000 patients exposed). These include: digoxin, aluminum hydroxide, multivitamins, acetaminophen, bisacodyl, aspirin, thiamine, prednisone, atropine, codeine, hydrochlorothiazide, morphine, insulin, warfarin, and spironolactone.
As research better explains the biochemistry of drug use, fewer ADRs are Type B and more are Type A. Common mechanisms are:
- Abnormal pharmacokinetics due to
- genetic factors
- comorbid disease states
- Synergistic effects between either
- a drug and a disease
- two drugs
Adverse effects may be local, i.e. limited to a certain location, or systemic, where a medication has caused adverse effects throughout the systemic circulation.
For instance, some ocular antihypertensives cause systemic effects, although they are administered locally as eye drops, since a fraction escapes to the systemic circulation.
Photosensitive drug reaction (or drug-induced photosensitivity) secondary to medications may cause phototoxic, photoallergic, and lichenoid reactions, and photodistributed telangiectasias, as well as pseudoporphyria.
Drugs involved include naproxen and doxycycline.
Idiosyncratic drug reactions, also known as type B reactions, are drug reactions that occur rarely and unpredictably amongst the population. This is not to be mistaken with idiopathic, which implies that the cause is not known. They frequently occur with exposure to new drugs, as they have not been fully tested and the full range of possible side-effects have not been discovered; they may also be listed as an adverse drug reaction with a drug, but are extremely rare.
Some patients have multiple-drug intolerance. Patients who have multiple idiopathic effects that are nonspecific are more likely to have anxiety and depression.
Idiosyncratic drug reactions appear to not be concentration dependent. A minimal amount of drug will cause an immune response, but it is suspected that at a low enough concentration, a drug will be less likely to initiate an immune response.
In adverse drug reactions involving overdoses, the toxic effect is simply an extension of the pharmacological effect (Type A adverse drug reactions). On the other hand, clinical symptoms of idiosyncratic drug reactions (Type B adverse drug reactions) are different from the pharmacological effect of the drug.
The proposed mechanism of most idiosyncratic drug reactions is immune-mediated toxicity. To create an immune response, a foreign molecule must be present that antibodies can bind to (i.e. the antigen) and cellular damage must exist. Very often, drugs will not be immunogenic because they are too small to induce immune response. However, a drug can cause an immune response if the drug binds a larger molecule. Some unaltered drugs, such as penicillin, will bind avidly to proteins. Others must be bioactivated into a toxic compound that will in turn bind to proteins. The second criterion of cellular damage can come either from a toxic drug/drug metabolite, or from an injury or infection.
These will sensitize the immune system to the drug and cause a response.
Idiosyncratic reactions fall conventionally under toxicology.
NSAID or nonsteroidal anti-inflammatory drug hypersensitivity reactions encompasses a broad range of allergic or allergic-like symptoms that occur within minutes to hours after ingesting aspirin or other NSAID nonsteroidal anti-inflammatory drugs. Hypersensitivity drug reactions differ from drug toxicity reactions in that drug toxicity reactions result from the pharmacological action of a drug, are dose-related, and can occur in any treated individual (see nonsteroidal anti-inflammatory drugs section on adverse reactions for NSAID-induced toxic reactions); hypersensitivity reactions are idiosyncratic reactions to a drug. Although the term NSAID was introduced to signal a comparatively low risk of adverse effects, NSAIDs do evoke a broad range of hypersensitivity syndromes. These syndromes have recently been classified by the European Academy of Allergy and Clinical Immunology Task Force on NSAIDs Hypersensitivity. The classification organizes the hypersensitivity reactions to NSAIDs into the following five categories:
- 1) NSAIDs-exacerbated respiratory disease (NERD) is an acute (immediate to several hours) exacerbation of bronchoconstriction and other symptoms of asthma (see aspirin-induced asthma) in individuals with a history of asthma and/or nasal congestion, rhinorrhea or other symptoms of rhinitis and sinusitis in individuals with a history of rhinosinusitis after ingestion of various NSAIDs, particularly those that act by inhibiting the COX-1 enzyme. NERD does not appear to be due to a true allergic reaction to NSAIDs but rather at least in part to the more direct effects of these drugs to promote the production and/or release of certain mediators of allergy. That is, inhibition of cellular COX activity deprives tissues of its anti-inflammatory product(s), particularly prostaglandin E2 while concurrently shuttling its substrate, arachidonic acid, into other metabolizing enzymes, particularly 5-lipoxygenase (ALOX5) to overproduce pro-inflammatory leukotriene and 5-Hydroxyicosatetraenoic acid metabolites and 15-lipoxygenase (ALOX15) to overproduce pro-inflammatory 15-Hydroxyicosatetraenoic acid metabolites, including eoxins; the condition is also associated with a reduction in the anti-inflammatory metabolite, lipoxin A4, and increases in certain pro-allergic chemokines such as eotaxin-2 and CCL7.
- 2) NSAIDs-exacerbated cutaneous disease (NECD) is an acute exacerbation of wheals and/or angioedema in individuals with a history of chronic urticaria. NECD also appears due to the non-allergic action of NSAIDs in inhibiting the production of COX anti-inflammatory metabolites while promoting the production 5-lipoxygenase and 15-lipoxygenase pro-inflammatory metabolites and the overproduction of certain pro-allergic chemokines, e.g. eotaxin-1, eotaxin-2, RANTES, and interleukin-5.
- 3) NSAIDs-induced urticarial disease (NEUD) is the acute development of wheals and/or angioedema in individuals with no history of chronic NSAIDs-induced urticaria or related diseases. The mechanism behind NEUD is unknown but may be due to the non-allergic action of NSAIDs in promoting the production and/or release of allergy mediators.
- 4) Single NSAID-induced urticarial/angioedema or anaphylaxis (SNIUAA) is the acute development of urticarial, angioedema, or anaphylaxis in response to a single type of NSAID and/or a single group of NSAIDs with a similar structure but not to other structurally unrelated NSAIDs in individuals with no history of underlying relevant chronic diseases. SNIUAA is due to a true IgE-mediated allergy reaction.
- 5 Single NSAID-induced delayed reactions (SNIDR) are a set of delayed onset (usually more than 24 hour) reactions to NSAIDs. SNIDR are most commonly skin reactions that may be relatively mild moderately severe such as maculopapular rash, fixed drug eruptions, photosensitivity reactions, delayed urticaria, and contact dermatitis or extremely severe such as the DRESS syndrome, acute generalized exanthematous pustulosis, the Stevens–Johnson syndrome, and toxic epidermal necrolysis (also termed Lyell's syndrome). SNIDR result from the drug-specific stimulation of CD4+ T lymphocytes and CD8+ cytotoxic T cells to elicit a delayed type hypersensitivity reaction.
Solar urticaria is an immunoglobulin E-mediated hypersensitivity that can be introduced through primary or secondary factors, or induced by exogenous photosensitization. Primary SU is believed to be a type I hypersensitivity (a mild to severe reaction to an antigen including anaphylaxis) in which an antigen, or substance provoking an immune response, is "induced by UV or visible radiation." Secondary SU can occur when a person comes into contact with chemicals such as tar, pitch, and dyes. People who use drugs such as benoxaprofen or patients with erythropoietic protoporphyria may also contract this secondary form. These items that cause this photosensitivity are exogenous photosensitizers because they are outside of the body and cause it to have a greater sensitivity to light.
Also, there have been a few unorthodox (unusual) causes of solar urticaria. For those susceptible to visible light, white T-shirts may increase the chances of experiencing an outbreak. In one case, doctors found that the white T-shirt absorbed UVA radiation from the sun and transformed it into visible light which caused the reaction. Another patient was being treated with the antibiotic tetracycline for a separate dermatological disorder and broke out in hives when exposed to the sun, the first case to implicate tetracycline as a solar urticaria inducing agent.
It is not yet known what specific agent in the body brings about the allergic reaction to the radiation. When patients with SU were injected with an irradiated autologous serum, many developed urticaria within the area of injection. When people who did not have SU were injected, they did not demonstrate similar symptoms. This indicates that the reaction is only a characteristic of the patients with solar urticaria and that it is not phototoxic. It is possible that this photoallergen is located on the binding sites of IgE that are found on the surface of mast cells. The photoallergen is believed to begin its configuration through the absorption of radiation by a chromophore. The molecule, because of the radiation, is transformed resulting in the formation of a new photoallergen.
In the United States, only about 4% of patients with photosensitive disorders are reported to have been diagnosed with solar urticaria. Internationally, the number is slightly larger at 5.3%. Solar urticaria may occur in all races but studies monitoring 135 African Americans and 110 Caucasians with photodermatoses found that 2.2% of the African Americans had SU and 8% of the Caucasians had the disease showing that Caucasians have a better chance of getting the disease. Globably 3.1 per 100,000 people are affected and females are more likely to be affected than males. The age ranges anywhere from 5–70 years old, but the average age is 35 and cases have been reported with children that are still in infancy. Solar urticaria accounts for less than one percent of the many documented urticaria cases. To put that into a better perspective, since its first documented case in Japan in 1916, over one hundred other instances of the disease have been reported.
The second most common cause of SJS and TEN is infection, particularly in children. This includes upper respiratory infections, otitis media, pharyngitis, and Epstein-Barr virus, Mycoplasma pneumoniae and cytomegalovirus infections. The routine use of medicines such as antibiotics, antipyretics and analgesics to manage infections can make it difficult to identify if cases were caused by the infection or medicines taken.
Viral diseases reported to cause SJS include: herpes simplex virus (debated), AIDS, coxsackievirus, influenza, hepatitis, and mumps.
In pediatric cases, Epstein-Barr virus and enteroviruses have been associated with SJS.
Recent upper respiratory tract infections have been reported by more than half of patients with SJS.
Bacterial infections linked to SJS include group A beta-hemolytic streptococci, diphtheria, brucellosis, lymphogranuloma venereum, mycobacteria, "Mycoplasma pneumoniae", rickettsial infections, tularemia, and typhoid.
Fungal infections with coccidioidomycosis, dermatophytosis, and histoplasmosis are also considered possible causes. Malaria and trichomoniasis, protozoal infections, have also been reported as causes.
Anticonvulsant/sulfonamide hypersensitivity syndrome is a potentially serious hypersensitivity reaction that can be seen with drugs with an aromatic amine chemical structure, such as aromatic anticonvulsants (e.g. diphenylhydantoin, phenobarbital, phenytoin, carbamazepine, lamotrigine), sulfonamides, or other drugs with an aromatic amine (procainamide). Cross-reactivity should not occur between drugs with an aromatic amine and drugs without an aromatic amine (e.g., sulfonylureas, thiazide diuretics, furosemide, and acetazolamide); therefore, these drugs can be safely used in the future.
The hypersensitivity syndrome is characterized by a skin eruption that is initially morbilliform. The rash may also be a severe Stevens-Johnson syndrome or toxic epidermal necrolysis. Systemic manifestations occur at the time of skin manifestations and include eosinophilia, hepatitis, and interstitial nephritis. However, a subgroup of patients may become hypothyroid as part of an autoimmune thyroiditis up to 2 months after the initiation of symptoms.
This kind of adverse drug reaction is caused by the accumulation of toxic metabolites; it is not the result of an IgE-mediated reaction. The risk of first-degree relatives’ developing the same hypersensitivity reaction is higher than in the general population.
As this syndrome can present secondary to multiple anticonvulsants, the general term "anticonvulsant hypersensitivity syndrome" is favored over the original descriptive term "dilantin hypersensitivity syndrome."
Although SJS can be caused by viral infections and malignancies, the main cause is medications. A leading cause appears to be the use of antibiotics, particularly sulfa drugs. Between 100 and 200 different drugs may be associated with SJS. No reliable test exists to establish a link between a particular drug and SJS for an individual case. Determining what drug is the cause is based on the time interval between first use of the drug and the beginning of the skin reaction. Drugs discontinued more than 1 month prior to onset of mucocutaneous physical findings are highly unlikely to cause SJS and TEN. SJS and TEN most often begin between 4 and 28 days after culprit drug administration. A published algorithm (ALDEN) to assess drug causality gives structured assistance in identifying the responsible medication.
SJS may be caused by adverse effects of the drugs vancomycin, allopurinol, valproate, levofloxacin, diclofenac, etravirine, isotretinoin, fluconazole, valdecoxib, sitagliptin, oseltamivir, penicillins, barbiturates, sulfonamides, phenytoin, azithromycin, oxcarbazepine, zonisamide, modafinil, lamotrigine, nevirapine, pyrimethamine, ibuprofen, ethosuximide, carbamazepine, bupropion, telaprevir, and nystatin.
Medications that have traditionally been known to lead to SJS, erythema multiforme, and toxic epidermal necrolysis include sulfonamide antibiotics, penicillin antibiotics, cefixime (antibiotic), barbiturates (sedatives), lamotrigine, phenytoin (e.g., Dilantin) (anticonvulsants) and trimethoprim. Combining lamotrigine with sodium valproate increases the risk of SJS.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are a rare cause of SJS in adults; the risk is higher for older patients, women, and those initiating treatment. Typically, the symptoms of drug-induced SJS arise within a week of starting the medication. Similar to NSAIDs, paracetamol (acetaminophen) has also caused rare cases of SJS. People with systemic lupus erythematosus or HIV infections are more susceptible to drug-induced SJS.
With no particular affinity to any particular ethnic group, seen in all age groups and equally amongst males and females, the precise prevalence is not known.
Alpha-gal allergies develop after a person has been bitten by the lone star tick in the United States, the European castor bean tick, and the paralysis tick in Australia. Alpha-gal is not naturally present in apes and humans, but is in all other mammals. If a tick feeds on another mammal, the alpha-gal will remain in its alimentary tract. The tick will then inject the alpha-gal into a person's skin, which in turn will cause the immune system to release a flood of IgE antibodies to fight off the foreign carbohydrate. Researchers still do not know which specific component of tick saliva causes the reaction.
A 2012 preliminary study found unexpectedly high rates of alpha-gal allergies in the Western and North Central parts of the United States, which suggests that the allergy may be spread by unknown tick species. Examples of alpha-gal allergies were even present in Hawaii, where none of the ticks identified with the allergies live. Human factors were suggested but no specific examples were provided.
Alpha-gal is present in the anti-cancer drug cetuximab, as well as the IV fluid replacements Gelofusine and Haemaccel. Blood thinners derived from porcine intestine and replacement heart valves derived from porcine tissue may also contain alpha-gal.
There has been at least one instance of a man with an alpha-gal allergy going into anaphylaxis after receiving a heart valve transplant. Some researchers have suggested that the alpha-gal which is prevalent in pig's tissue and used for xenografts may contribute to organ rejection.
The primary treatment strategy is to eliminate or discontinue the offensive agent. Supportive therapy, such as ice packs, may be provided to get the body temperature within physiologic range. In severe cases, when the fever is high enough (generally at or above ~104° F or 40° C), aggressive cooling such as an ice bath and pharmacologic therapy such as benzodiazepines may be deemed appropriate.
Bullous drug reaction (also known as a "bullous drug eruption", "generalized bullous fixed drug eruption", and "multilocular bullous fixed drug eruption") most commonly refers to a drug reaction in the erythema multiforme group. These are uncommon reactions to medications, with an incidence of 0.4 to 1.2 per million person-years for toxic epidermal necrolysis and 1.2 to 6.0 per million person-years for Stevens–Johnson syndrome. The primary skin lesions are large erythemas (faintly discernible even after confluence), most often irregularly distributed and of a characteristic purplish-livid color, at times with flaccid blisters.
Lipoproteins released from treatment of "Treponema pallidum" infections are believed to induce the Jarisch-Herxheimer reaction. The Herxheimer reaction has shown an increase in inflammatory cytokines during the period of exacerbation, including tumor necrosis factor alpha, interleukin-6 and interleukin-8.
Insect bites and stings occur when an insect is agitated and seeks to defend itself through its natural defense mechanisms, or when an insect seeks to feed off the bitten person. Some insects inject formic acid, which can cause an immediate skin reaction often resulting in redness and swelling in the injured area. Stings from fire ants, bees, wasps and hornets are usually painful, and may stimulate a dangerous allergic reaction called anaphylaxis for at-risk patients, and some wasps can also have a powerful bite along with a sting. Bites from mosquitoes and fleas are more likely to cause itching than pain.
The skin reaction to insect bites and stings usually lasts for up to a few days. However, in some cases the local reaction can last for up to two years. These bites are sometimes misdiagnosed as other types of benign or cancerous lesions.
Salicylate sensitivity, also known as salicylate intolerance, is any adverse effect that occurs when a usual amount of salicylate is ingested. People with salicylate intolerance are unable to consume a normal amount of salicylate without adverse effects.
Salicylate sensitivity differs from salicylism, which occurs when an individual takes an overdose of salicylates. Salicylate overdose can occur in people without salicylate sensitivity, and can be deadly if untreated. For more information, see aspirin poisoning.
Salicylates are derivatives of salicylic acid that occur naturally in plants and serve as a natural immune hormone and preservative, protecting the plants against diseases, insects, fungi, and harmful bacteria. Salicylates can also be found in many medications, perfumes and preservatives. Both natural and synthetic salicylates can cause health problems in anyone when consumed in large doses. But for those who are salicylate intolerant, even small doses of salicylate can cause adverse reactions.
Alpha-gal allergy, also known as meat allergy or Mammalian Meat Allergy (MMA), is a reaction to galactose-alpha-1,3-galactose (alpha-gal), whereby the body is overloaded with immunoglobulin E (IgE) antibodies on contact with the carbohydrate. The alpha-gal molecule is found in all mammals apart from Old World monkeys and the apes, which include humans. Anti-Gal is a human natural antibody which interacts specifically with the mammalian carbohydrate structure Gal alpha 1-3Gal beta 1-4GlcNAc-R, termed, the alpha-galactosyl epitope. Whereas anti-Gal is abundant in humans, apes and Old World monkeys, it is absent from New World monkeys, prosimians and nonprimate mammals.
Bites from certain ticks, such as the lone star tick in the US, which can transfer this carbohydrate to the victim have been implicated in the development of this delayed allergic response which is triggered by the consumption of mammalian meat products. Despite myths to the contrary, an alpha-gal allergy does not require the afflicted to become a vegetarian, as poultry and fish do not trigger a reaction.
The allergy most often occurs in the central and southern United States, which corresponds to the distribution of the lone star tick. In the Southern United States, where the tick is most prevalent, allergy rates are 32% higher than elsewhere. However, as doctors are not required to report the number of patients suffering the alpha-gal allergies, the true number of affected individuals is unknown. While there is no known cure, symptoms of the allergy may recede over time. Some patients report observing symptoms for over 20 years.
The histomorphologic appearance of insect bites is usually characterized by a wedge-shaped superficial dermal perivascular infiltrate consisting of abundant lymphocytes and scattered eosinophils. This appearance is non-specific, i.e. it may be seen in a number of conditions including:
- Drug reactions,
- Urticarial reactions,
- Prevesicular early stage of bullous pemphigoid, and
- HIV related dermatoses.
Other rashes that occur in a widespread distribution can look like an id reaction. These include atopic dermatitis, contact dermatitis, dyshidrosis, photodermatitis, scabies and drug eruptions.