Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Factors increasing the risk (to either the woman, the fetus/es, or both) of pregnancy complications beyond the normal level of risk may be present in a woman's medical profile either before she becomes pregnant or during the pregnancy. These pre-existing factors may relate to physical and/or mental health, and/or to social issues, or a combination.
Some common risk factors include:
- Age of either parent
- Adolescent parents
- Older parents
- Exposure to environmental toxins in pregnancy
- Exposure to recreational drugs in pregnancy:
- Ethanol during pregnancy can cause fetal alcohol syndrome and fetal alcohol spectrum disorder.
- Tobacco smoking and pregnancy, when combined, causes twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
- Prenatal cocaine exposure is associated with, for example, premature birth, birth defects and attention deficit disorder.
- Prenatal methamphetamine exposure can cause premature birth and congenital abnormalities. Other investigations have revealed short-term neonatal outcomes to include small deficits in infant neurobehavioral function and growth restriction when compared to control infants. Also, prenatal methamphetamine use is believed to have long-term effects in terms of brain development, which may last for many years.
- Cannabis in pregnancy is possibly associated with adverse effects on the child later in life.
- Exposure to Pharmaceutical drugs in pregnancy. Anti-depressants, for example, may increase risks of such outcomes as preterm delivery.
- Ionizing radiation
- Risks arising from previous pregnancies:
- Complications experienced during a previous pregnancy are more likely to recur.
- Many previous pregnancies. Women who have had five previous pregnancies face increased risks of very rapid labor and excessive bleeding after delivery.
- Multiple previous fetuses. Women who have had more than one fetus in a previous pregnancy face increased risk of mislocated placenta.
- Multiple pregnancy, that is, having more than one fetus in a single pregnancy.
- Social and socioeconomic factors. Generally speaking, unmarried women and those in lower socioeconomic groups experience an increased level of risk in pregnancy, due at least in part to lack of access to appropriate prenatal care.
- Unintended pregnancy. Unintended pregnancies preclude preconception care and delays prenatal care. They preclude other preventive care, may disrupt life plans and on average have worse health and psychological outcomes for the mother and, if birth occurs, the child.
- Height. Pregnancy in women whose height is less than 1.5 meters (5 feet) correlates with higher incidences of preterm birth and underweight babies. Also, these women are more likely to have a small pelvis, which can result in such complications during childbirth as shoulder dystocia.
- Weight
- Low weight: Women whose pre-pregnancy weight is less than 45.5 kilograms (100 pounds) are more likely to have underweight babies.
- Obese women are more likely to have very large babies, potentially increasing difficulties in childbirth. Obesity also increases the chances of developing gestational diabetes, high blood pressure, preeclampsia, experiencing postterm pregnancy and/or requiring a cesarean delivery.
- Intercurrent disease in pregnancy, that is, a disease and condition not necessarily directly caused by the pregnancy, such as diabetes mellitus in pregnancy, SLE in pregnancy or thyroid disease in pregnancy.
In the United States, intrauterine hypoxia and birth asphyxia were listed together as the tenth leading cause of neonatal death.
Fetal mortality refers to stillbirths or fetal death. It encompasses any death of a fetus after 20 weeks of gestation or 500 gm. In some definitions of the PNM early fetal mortality (week 20-27 gestation) is not included, and the PNM may only include late fetal death and neonatal death. Fetal death can also be divided into death prior to labor, antenatal (antepartum) death, and death during labor, intranatal (intrapartum) death.
Some disorders and conditions can mean that pregnancy is considered high-risk (about 6-8% of pregnancies in the USA) and in extreme cases may be contraindicated. High-risk pregnancies are the main focus of doctors specialising in maternal-fetal medicine.
Serious pre-existing disorders which can reduce a woman's physical ability to survive pregnancy include a range of congenital defects (that is, conditions with which the woman herself was born, for example, those of the heart or , some of which are listed above) and diseases acquired at any time during the woman's life.
IH/BA is also a causitive factor in cardiac and circulatory birth defects the sixth most expensive condition, as well as premature birth and low birth weight the second most expensive and it is one of the contributing factors to infant respiratory distress syndrome (RDS) also known as hyaline membrane disease, the most expensive medical condition to treat and the number one cause of infant mortality.
Some doctors recommend complete bed-rest for the mother coupled with massive intakes of protein as a therapy to try to counteract the syndrome. Research completed shows these nutritional supplements do work. Diet supplementation was associated with lower overall incidence of TTTS (20/52 versus 8/51, P = 0.02) and with lower prevalence of TTTS at delivery (18/52 versus 6/51, P = 0.012) when compared with no supplementation. Nutritional intervention also significantly prolonged the time between the diagnosis of TTTS and delivery (9.4 ± 3.7 weeks versus 4.6 ± 6.5 weeks; P = 0.014). The earlier nutritional regimen was introduced, the lesser chance of detecting TTTS ( P = 0.001). Although not statistically significant, dietary intervention was also associated with lower Quintero stage, fewer invasive treatments, and lower twin birth weight discordance. Diet supplementation appears to counter maternal metabolic abnormalities in monochorionic twin pregnancies and improve perinatal outcomes in TTTS when combined with the standard therapeutic options. Nutritional therapy appears to be most effective in mitigating cases that are caught in Quintero Stage I, little effect has been observed in those that are beyond Stage I.
Early neonatal mortality refers to a death of a live-born baby within the first seven days of life, while late neonatal mortality covers the time after 7 days until before 28 days. The sum of these two represents the neonatal mortality. Some definitions of the PNM include only the early neonatal mortality. Neonatal mortality is affected by the quality of in-hospital care for the neonate. Neonatal mortality and postneonatal mortality (covering the remaining 11 months of the first year of life) are reflected in the Infant Mortality Rate.
Based on recent (2005) US NCHS data, the rate of multiple births is now approximately 3.4% (4,138,349 total births, of which 139,816 were twins or higher-order multiple births).
The majority of identical twins share a common (monochorionic) placenta, and of these approximately 15% go on to develop TTTS.
By extrapolating the number of expected identical twins (about one-third) from annual multiple births, and the number of twins with monochorionic placentae (about two-thirds), and from these the number thought to develop TTTS (about 15%), there are at least 4,500 TTTS cases per year in the U.S. alone: 139,816 X .33 X .66 X .15 = 4,568 cases of TTTS per year in U.S. (involving more than 9,000 babies.)
Since spontaneous pregnancy losses and terminations that occur prior to 20 weeks go uncounted by the C.D.C., this estimate of TTTS cases may be very conservative.
Although infertility treatments have increased the rate of multiple birth, they have not appreciably diluted the expected incidence of identical twins. Studies show a higher rate of identical twins (up to 20 times with IVF) using these treatments versus spontaneous pregnancy rates.
One Australian study, however, noted an occurrence of only 1 in 4,170 pregnancies or 1 in 58 twin gestations. This distinction could be partly explained by the "hidden mortality" associated with MC multifetal pregnancies—instances lost due to premature rupture of membrane (PROM) or intrauterine fetal demise before a thorough diagnosis of TTTS can be made.
Fetuses with polyhydramnios are at risk for a number of other problems including cord prolapse, placental abruption, premature birth and perinatal death. At delivery the baby should be checked for congenital abnormalities.
A 2008 bulletin from the World Health Organization estimates that 900,000 total infants die each year from birth asphyxia, making it a leading cause of death for newborns.
In the United States, intrauterine hypoxia and birth asphyxia was listed as the tenth leading cause of neonatal death.
Perinatal asphyxia, neonatal asphyxia or birth asphyxia is the medical condition resulting from deprivation of oxygen to a newborn infant that lasts long enough during the birth process to cause physical harm, usually to the brain. Hypoxic damage can occur to most of the infant's organs (heart, lungs, liver, gut, kidneys), but brain damage is of most concern and perhaps the least likely to quickly or completely heal. In more pronounced cases, an infant will survive, but with damage to the brain manifested as either mental, such as developmental delay or intellectual disability, or physical, such as spasticity.
It results most commonly from a drop in maternal blood pressure or some other substantial interference with blood flow to the infant's brain during delivery. This can occur due to inadequate circulation or perfusion, impaired respiratory effort, or inadequate ventilation. Perinatal asphyxia happens in 2 to 10 per 1000 newborns that are born at term, and more for those that are born prematurely. WHO estimates that 4 million neonatal deaths occur yearly due to birth asphyxia, representing 38% of deaths of children under 5 years of age.
Perinatal asphyxia can be the cause of hypoxic ischemic encephalopathy or intraventricular hemorrhage, especially in preterm births. An infant suffering severe perinatal asphyxia usually has poor color (cyanosis), perfusion, responsiveness, muscle tone, and respiratory effort, as reflected in a low 5 minute Apgar score. Extreme degrees of asphyxia can cause cardiac arrest and death. If resuscitation is successful, the infant is usually transferred to a neonatal intensive care unit.
There has long been a scientific debate over whether newborn infants with asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
There is considerable controversy over the diagnosis of birth asphyxia due to medicolegal reasons. Because of its lack of precision, the term is eschewed in modern obstetrics.
Substances whose toxicity can cause congenital disorders are called "teratogens", and include certain pharmaceutical and recreational drugs in pregnancy as well as many environmental toxins in pregnancy.
A review published in 2010 identified 6 main teratogenic mechanisms associated with medication use: folate antagonism, neural crest cell disruption, endocrine disruption, oxidative stress, vascular disruption and specific receptor- or enzyme-mediated teratogenesis.
It is estimated that 10% of all birth defects are caused by prenatal exposure to a teratogenic agent. These exposures include, but are not limited to, medication or drug exposures, maternal infections and diseases, and environmental and occupational exposures. Paternal smoking use has also been linked to an increased risk of birth defects and childhood cancer for the offspring, where the paternal germline undergoes oxidative damage due to cigarette use. Teratogen-caused birth defects are potentially preventable. Studies have shown that nearly 50% of pregnant women have been exposed to at least one medication during gestation. During pregnancy, a female can also be exposed to teratogens from the contaminated clothing or toxins within the seminal fluid of a partner. An additional study found that of 200 individuals referred for genetic counseling for a teratogenic exposure, 52% were exposed to more than one potential teratogen.
A low socioeconomic status in a deprived neighborhood may include exposure to “environmental stressors and risk factors.” Socioeconomic inequalities are commonly measured by the Cartairs-Morris score, Index of Multiple Deprivation, Townsend deprivation index, and the Jarman score. The Jarman score, for example, considers “unemployment, overcrowding, single parents, under-fives, elderly living alone, ethnicity, low social class and residential mobility.” In Vos’ meta-analysis these indices are used to view the effect of low SES neighborhoods on maternal health. In the meta-analysis, data from individual studies were collected from 1985 up until 2008. Vos concludes that a correlation exists between prenatal adversities and deprived neighborhoods. Other studies have shown that low SES is closely associated with the development of the fetus in utero and growth retardation. Studies also suggest that children born in low SES families are “likely to be born prematurely, at low birth weight, or with asphyxia, a birth defect, a disability, fetal alcohol syndrome, or AIDS.” Bradley and Corwyn also suggest that congenital disorders arise from the mother’s lack of nutrition, a poor lifestyle, maternal substance abuse and “living in a neighborhood that contains hazards affecting fetal development (toxic waste dumps).” In a meta-analysis that viewed how inequalities influenced maternal health, it was suggested that deprived neighborhoods often promoted behaviors such as smoking, drug and alcohol use. After controlling for socioeconomic factors and ethnicity, several individual studies demonstrated an association with outcomes such as perinatal mortality and preterm birth.
There are several pathologic conditions that can predispose a pregnancy to polyhydramnios. These include a maternal history of diabetes mellitus, Rh incompatibility between the fetus and mother, intrauterine infection, and multiple pregnancies.
During the pregnancy, certain clinical signs may suggest polyhydramnios. In the mother, the physician may observe increased abdominal size out of proportion for her weight gain and gestation age, uterine size that outpaces gestational age, shiny skin with stria (seen mostly in severe polyhydramnios), dyspnea, and chest heaviness. When examining the fetus, faint fetal heart sounds are also an important clinical sign of this condition.
Transient tachypnea of the newborn occurs in approximately 1 in 100 preterm infants and 3.6-5.7 per 1000 term infants. It is most common in infants born by Cesarian section without a trial of labor after 35 weeks' gestation. Male infants and infants with an umbilical cord prolapse or perinatal asphyxia are at higher risk. Parental risk factors include use of pain control or anesthesia during labor, asthma, and diabetes.
Risk factors of early neonatal hypocalcemia
- Prematurity
- Perinatal asphyxia
- Diabetes mellitus in the mother
- Maternal hyperparathyroidism
- Intrauterine growth retardation (IUGR)
- Iatrogenic
Risk factors of late neonatal hypocalcemia
- Exogenous phosphate load
- Use of gentamicin
- Gender and ethnic: late neonatal hypocalcemia occurred more often in male infants and Hispanic infants
- Others
Due to the higher incidence of TTN in newborns delivered by caesarean section, it has been postulated that TTN could result from a delayed absorption of fetal lung fluid from the pulmonary lymphatic system. The increased fluid in the lungs leads to increased airway resistance and reduced lung compliance. It is thought this could be from lower levels of circulating catecholamines after a caesarean section, which are believed to be necessary to alter the function of the ENaC channel to absorb excess fluid from the lungs. Pulmonary immaturity has also been proposed as a causative factor. Levels of phosphatidylglycerol (an indicator of lung maturity) were found to be negative in certain newborns
Mild surfactant deficiency has also been suggested as a causative factor.
Neonatal hypocalcemia is an abnormal clinical and laboratory hypocalcemia condition that is frequently observed in infants.[1]
Healthy term infants go through a physiological nadir of serum calcium levels at 7.5 - 8.5 mg/dL by day 2 of life. Hypocalcemia is a low blood calcium level. A total serum calcium of less than 8 mg/dL (2mmol/L) or ionized calcium less than 1.2 mmol/L in term neonates is defined as hypocalcemia. In preterm infants, it is defined as less than 7mg/dL (1.75 mmol/L) total serum calcium or less than 4mg/dL (1 mmol/L) ionized calcium. [2]
Both early onset hypocalcemia (presents within 72h of birth) and late onset hypocalcemia (presents in 3-7 days after birth) require calcium supplementation treatment.
The treatment for auto-brewery syndrome is a change in diet requiring low carbohydrates and high protein. Sugar is fermented into alcohol, and a diet that effectively lowers sugars also lowers the alcohol that can be fermented from it. Anything that causes an imbalance between the beneficial and harmful bacteria in the gut can help increase the chance that fermentation in the gut will develop. This can include not only antibiotics, but also overindulgence in sugars and carbohydrates. Watching what you eat could lower the risk of gut fermentation syndrome, and taking probiotics could further protect you by increasing the number of good bacteria in your system.
The effects of the disease can have profound effects on everyday life. As well, the recurring side effects of excessive belching, dizziness, dry mouth, hangovers, disorientation, irritable bowel syndrome, and chronic fatigue syndrome can lead to other health problems such as depression, anxiety and poor productivity in employment. The random state of intoxication can lead to personal difficulties, and the relative obscurity of the condition can also make it hard to seek treatment.
Circumvallate placenta is a placental morphological abnormalitiy, a subtype of placenta extrachorialis in which the fetal membranes (chorion and amnion) "double back" on the fetal side around the edge of the placenta. After delivery, a circumvallate placenta has a thick ring of membranes on its fetal surface.
The fetal surface is divided into a central depressed zone surrounded by a thickened white ring which is incomplete the ring is situated at varying distance from the margin of the placenta. The ring is composed of a double fold of amnion and chorion with degenerated decidua vera and fibrin in between. Vessels radiate from the cord insertion as far as the ring and then disappear from the view.
Complete circumvallate placenta occurs in approximately 1% of pregnancies. It is diagnosed prenatally by medical ultrasonography, although one 1997 study of prenatal ultrasounds found that "of the normal placentas, 35% were graded as probably or definitely circumvallate by at least one sonologist," and "all sonologists misgraded the case of complete circumvallation as normal." The condition is associated with perinatal complications such as placental abruption, oligohydramnios, abnormal cardiotocography, preterm birth, and miscarriage.
In a newborn boy thought to have Fryns syndrome, Clark and Fenner-Gonzales (1989) found mosaicism for a tandem duplication of 1q24-q31.2. They suggested that the gene for this disorder is located in that region. However, de Jong et al. (1989), Krassikoff and Sekhon (1990), and Dean et al. (1991) found possible Fryns syndrome associated with anomalies of chromosome 15, chromosome 6, chromosome 8(human)and chromosome 22, respectively. Thus, these cases may all represent mimics of the mendelian syndrome and have no significance as to the location of the gene for the recessive disorder.
By array CGH, Slavotinek et al. (2005) screened patients with DIH and additional phenotypic anomalies consistent with Fryns syndrome for cryptic chromosomal aberrations. They identified submicroscopic chromosome deletions in 3 probands who had previously been diagnosed with Fryns syndrome and had normal karyotyping with G-banded chromosome analysis. Two female infants were found to have microdeletions involving 15q26.2 (see 142340), and 1 male infant had a deletion in band 8p23.1 (see 222400).
In France, Aymé, "et al." (1989) estimated the prevalence of Fryns syndrome to be 0.7 per 10,000 births based on the diagnosis of 6 cases in a series of 112,276 consecutive births (live births and perinatal deaths).
Autoimmune enteropathy (AIE) is a rare disorder of the immune system condition that affects infants, young children and (rarely) adults causing severe diarrhea, vomiting, and other morbidities of the digestive tract. AIE causes malabsorption of food, vitamins, and minerals often necessitating replacement fluids and total parenteral nutrition. Some disorders, such as IPEX Syndrome, include autoimmune enteropathy as well as autoimmune "pathies" of the skin, thyroid, other glands, or kidneys.
The first line of treatment are corticosteroids and other medicines used to suppress the immune system such as tacrolimus and sirolimus.
A intravenous nutrition such as total parenteral nutrition and/or a special diet may be necessary. Hematopoietic stem cell transplantation may be curative.