Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The incidence and prevalence of PMD are unknown, and no studies have yet investigated its prevalence or incidence. However, it is generally agreed that PMD is a very rare condition. Some uncertainty regarding the incidence of PMD may be attributed to its confusion with keratoconus. PMD is not linked to race or age, although most cases present early in life, between 20 and 40 years of age. While PMD is usually considered to affect men and women equally, some studies suggest that it may affect men more frequently.
Several diseases have been observed in patients with PMD. However, no causal relationships have been established between any of the associated diseases and the pathogenesis of PMD. Such diseases include: chronic open-angle glaucoma, retinitis pigmentosa, retinal lattice degeneration, scleroderma, kerato-conjunctivitis, eczema, and hyperthyroidism.
Visual function declines as a result of the irregular corneal shape, resulting in astigmatism, and causing a distortion in vision. Deterioration can become severe over time.
Patients with keratoconus typically present initially with mild astigmatism and myopia, commonly at the onset of puberty, and are diagnosed by the late teenage years or early 20s. The disease can, however, present or progress at any age; in rare cases, keratoconus can present in children or not until later adulthood. A diagnosis of the disease at an early age may indicate a greater risk of severity in later life. Patients' vision will seem to fluctuate over a period of months, driving them to change lens prescriptions frequently, but as the condition worsens, contact lenses are required in the majority of cases. The course of the disorder can be quite variable, with some patients remaining stable for years or indefinitely, while others progress rapidly or experience occasional exacerbations over a long and otherwise steady course. Most commonly, keratoconus progresses for a period of 10 to 20 years before the course of the disease generally ceases in the third and fourth decades of life.
The National Eye Institute reports keratoconus is the most common corneal dystrophy in the United States, affecting about one in 2,000 Americans, but some reports place the figure as high as one in 500. The inconsistency may be due to variations in diagnostic criteria, with some cases of severe astigmatism interpreted as those of keratoconus, and" vice versa". A long-term study found a mean incidence rate of 2.0 new cases per 100,000 population per year. Some studies have suggested a higher prevalence amongst females, or that people of South Asian ethnicity are 4.4 times as likely to suffer from keratoconus as Caucasians, and are also more likely to be affected with the condition earlier.
Keratoconus is normally bilateral (affecting both eyes) although the distortion is usually asymmetric and is rarely completely identical in both corneas. Unilateral cases tend to be uncommon, and may in fact be very rare if a very mild condition in the better eye is simply below the limit of clinical detection. It is common for keratoconus to be diagnosed first in one eye and not until later in the other. As the condition then progresses in both eyes, the vision in the earlier-diagnosed eye will often remain poorer than that in its fellow.
No complications are encountered in most patients with lattice degeneration, although in young myopes, retinal detachment can occur. There are documented cases with macula-off retinal detachment in patients with asymptomatic lattice degeneration. Partial or complete vision loss almost always occurs in such cases. Currently there is no prevention or cure for lattice degeneration.
Spectacles or RGP contact lenses can be used to manage the astigmatism. when the condition worsens, surgical correction may be required.
Age-related macular degeneration accounts for more than 54% of all vision loss in the white population in the USA. An estimated 8 million Americans are affected with early age-related macular degeneration, of whom over 1 million will develop advanced age-related macular degeneration within the next 5 years. In the UK, age-related macular degeneration is the cause of blindness in almost 42% of those who go blind aged 65–74 years, almost two-thirds of those aged 75–84 years, and almost three-quarters of those aged 85 years or older.
Macular degeneration is more likely to be found in Caucasians than in people of African descent.
Before LASIK surgery, people must be examined for possible risk factors such as keratoconus.
Abnormal corneal topography compromises of keratoconus, pellucid marginal degeneration, or forme fruste keratoconus with an I-S value of 1.4 or more is the most significant risk factor. Low age, low residual stromal bed (RSB) thickness, low preoperative corneal thickness, and high myopia are other important risk factors.
CNV causes may be congenital in nature, such as with Aniridia, or acquired. Frequently, inflammatory, infectious, degenerative, traumatic and iatrogenic (from contact lenses) diseases are responsible for acquired CNV.
Some major associated, acquired inflammatory conditions include graft rejection following keratoplasty, graft or host diseases of the new tissue, atopic conjunctivitis, rosacea, ocular pemphigoid, Lyell's syndrome, and Steven's Johnson syndrome.
Infections responsible for CNV range from bacterial (chlamydia, syphilis, pseduomonas), Viral (herpes simplex and herpes zoster viruses), Fungal (candida, asperigillus, fusarium), and parasistic (onchocerca volvolus).
Degenerative diseases such as pterygiums, and terrien's marginal degeneration may be responsible.
Traumas frequently seen with CNV include ulceration, alkali burns, and stem cell deficiency.
One of the most common causes of corneal neovascularization is iastrogenic pathology from contact lens wear. This is especially true of lenses made with older hydrogel materials such as HEMA (2-hydroxyethyl methacrylate) for both daily and extended wear. Such older hydrogel materials have a relatively low oxygen transmissibility so the cornea becomes starved of oxygen leading to the ingress of blood capillaries into the clear cornea to satisfy that oxygen demand. Older estimates have 128,000 to 470,000 cases of lens-induced CNV each year, but this may be decreasing due to the increasing popularity of daily disposable lenses.
The risk for CNV is elevated in certain instances for patients following penetrating keratoplasty without active inflammation or epithelial defects. CNV is more likely to occur in those with active blepharitis, those who receive sutured knots in their host stromas, and those with a large recipient area.
Studies indicate drusen associated with AMD are similar in molecular composition to Beta-Amyloid (βA) plaques and deposits in other age-related diseases such as Alzheimer's disease and atherosclerosis. This suggests that similar pathways may be involved in the etiologies of AMD and other age-related diseases.
Corneal ectatic disorders or corneal ectasia are a group of uncommon, noninflammatory, eye disorders characterised by bilateral thinning of the central, paracentral, or peripheral cornea.
- Keratoconus, a progressive, noninflammatory, bilateral, asymmetric disease, characterized by paraxial stromal thinning and weakening that leads to corneal surface distortion.
- Keratoglobus, a rare noninflammatory corneal thinning disorder, characterised by generalised thinning and globular protrusion of the cornea.
- Pellucid marginal degeneration, a bilateral, noninflammatory disorder, characterized by a peripheral band of thinning of the inferior cornea.
- Posterior keratoconus, a rare condition, usually congenital, which causes a nonprogressive thinning of the inner surface of the cornea, while the curvature of the anterior surface remains normal. Usually only a single eye is affected.
- Post-LASIK ectasia, a complication of LASIK eye surgery.
- Terrien's marginal degeneration, a painless, noninflammatory, unilateral or asymmetrically bilateral, slowly progressive thinning of the peripheral corneal stroma.
Treatment options include contact lenses and intrastromal corneal ring segments for correcting refractive errors caused by irregular corneal surface, corneal collagen cross-linking to strengthen a weak and ectatic cornea, or corneal transplant for advanced cases.
Lattice degeneration is a disease of the human eye wherein the peripheral retina becomes atrophic in a lattice pattern and may develop tears, breaks, or holes, which may further progress to retinal detachment. It is an important cause of retinal detachment in young myopic individuals. The cause is unknown, but pathology reveals inadequate blood flow resulting in ischemia and fibrosis.
Lattice degeneration occurs in approximately 6–8% of the general population and in approximately 30% of phakic retinal detachments. Similar lesions are seen in patients with Ehlers-Danlos syndrome, Marfan syndrome, and Stickler syndrome, all of which are associated with an increased risk of retinal detachment. Risk of developing lattice degeneration in one eye is also increased if lattice degeneration is already present in the other eye.
The Fuchs spot or sometimes Forster-Fuchs' retinal spot is a degeneration of the macula in case of high myopia. It is named after the two persons who first described it: Ernst Fuchs, who described a pigmented lesion in 1901, and Forster, who described subretinal neovascularisation in 1862. The size of the spots are proportionate to the severity of the pathological myopia.
Usually being asymptomatic, drusen are typically found during routine eye exams where the pupils have been dilated.
Terrien marginal degeneration is a noninflammatory, unilateral or asymmetrically bilateral, slowly progressive thinning of the peripheral corneal stroma.
The cause of Terrien marginal degeneration is unknown, its prevalence is roughly equal between males and females, and it usually occurs in the second or third decade of life.
Post-LASIK ectasia is a condition similar to keratoconus where the cornea starts to bulge forwards at a variable time after LASIK eye surgery.
Drusen are associated with aging and macular degeneration are distinct from another clinical entity, optic disc drusen, which is present on the optic nerve head. Both age-related drusen and optic disc drusen can be observed by ophthalmoscopy. Optical coherence tomography scans of the orbits or head, calcification at the head of the optic nerve without change in size of globe strongly suggests drusen in a middle-age or elderly patient.
Whether drusen promote AMD or are symptomatic of an underlying process that causes both drusen and AMD is not known, but they are indicators of increased risk of the complications of AMD.
'Hard drusen' may coalesce into 'soft drusen' which is a manifestation of macular degeneration.
First signs of a Fuchs spot are distorted sight of straight lines near the fovea, which some days later turn to the typical well-circumscribed patches after absorption of haemorrhage, and a pigmented scar remains. As in macular degeneration, central sight is affected. Atrophy leads to the loss of two or more lines of the Snellen chart.
As it is associated with excessive sun or wind exposure, wearing protective sunglasses with side shields and/or wide brimmed hats and using artificial tears throughout the day may help prevent their formation or stop further growth. Surfers and other water-sport athletes should wear eye protection that blocks 100% of the UV rays from the water, as is often used by snow-sport athletes. Many of those who are at greatest risk of pterygium from work or play sun exposure do not understand the importance of protection.
Metamorphopsia is a type of distorted vision in which a grid of straight lines appears wavy and parts of the grid may appear blank. People with this condition often first notice this when looking at mini-blinds in their home.
It is mainly associated with macular degeneration, particularly age-related macular degeneration with choroidal neovascularization. Other conditions that can present with complaints of metamorphopsia include pathological myopia, presumed ocular histoplasmosis syndrome, choroidal rupture and multifocal choroiditis.
Dry (nonexudative, > 80%)—deposition of yellowish extracellular material in and between bruch membrane and retinal pigment epithelium (“drusen”) with gradual loss in vision.
Wet (exudative, 10–15%)—rapid loss of vision due to bleeding secondary to choroidal neovascularization.
CNV can occur rapidly in individuals with defects in Bruch's membrane, the innermost layer of the choroid. It is also associated with excessive amounts of Vascular endothelial growth factor (VEGF). As well as in wet macular degeneration, CNV can also occur frequently with the rare genetic disease pseudoxanthoma elasticum and rarely with the more common optic disc drusen. CNV has also been associated with extreme myopia or malignant myopic degeneration, where in choroidal neovascularization occurs primarily in the presence of cracks within the retinal (specifically) macular tissue known as lacquer cracks.
Corneal neovascularization (CNV) is the in-growth of new blood vessels from the pericorneal plexus into avascular corneal tissue as a result of oxygen deprivation. Maintaining avascularity of the corneal stroma is an important aspect of corneal pathophysiology as it is required for corneal transparency and optimal vision. A decrease in corneal transparency causes visual acuity deterioration. Corneal tissue is avascular in nature and the presence of vascularization, which can be deep or superficial, is always pathologically related.
Corneal neovascularization is a sight-threatening condition that can be caused by inflammation related to infection, chemical injury, autoimmune conditions, post-corneal transplantation, and traumatic conditions among other ocular pathologies. Common causes of CNV within the cornea include trachoma, corneal ulcers, phylctenular keratoconjunctivitis, rosacea keratitis, interstitial keratitis, sclerosing keratitis, chemical burns, and wearing contact lenses for over-extended periods of time. Superficial presentations of CNV are usually associated with contact lens wear, while deep presentations may be caused by chronic inflammatory and anterior segment ocular diseases.
Corneal neovascularization is becoming increasingly common worldwide with an estimated incidence rate of 1.4 million cases per year, according to a 1998 study by the Massachusetts Eye and Ear Infirmary. The same study found that the tissue from twenty percent of corneas examined during corneal transplantations had some degree of neovascularization, negatively impacting the prognosis for individuals undergoing keratoplasty procedures.
The pathogenesis of GA is multifactorial and is generally thought to be triggered by intrinsic and extrinsic stressors of the poorly regenerative retinal pigment epithelium (RPE), particularly oxidative stress caused by the high metabolic demand of photoreceptors, photo-oxidation, and environmental stressors such as cigarette smoke. Variations in several genes, particularly in the complement system, increase the risk of developing GA. This is an active area of research but the current hypothesis is that with aging, damage caused by these stressors accumulates, which coupled with a genetic predisposition, results in the appearance of drusen and lipofuscin deposits (early and intermediate AMD). These and other products of oxidative stress can trigger inflammation via multiple pathways, particularly the complement cascade, ultimately leading to loss of photoreceptors, RPE, and choriocapillaris, culminating in atrophic lesions that grow over time.