Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Pelger–Huët anomaly (pronunciation: [pel′gər hyo̅o̅′ət]) is a blood laminopathy associated with the lamin B receptor.
It is characterized by a white blood cell type known as a neutrophil whose nucleus is hyposegmented.
It is a genetic disorder with an autosomal dominant inheritance pattern. Heterozygotes are clinically normal, although their neutrophils may be mistaken for immature cells which may cause mistreatment in a clinical setting. Homozygotes tend to have neutrophils with rounded nuclei that do have some functional problems.
Is a benign dominantly inherited defect of terminal neutrophil differentiation as a result of mutations in the lamin B receptor gene. The characteristic leukocyte appearance was first reported in 1928 by Karel Pelger (1885-1931), a Dutch Hematologist, who described leukocytes with dumbbell-shaped bilobed nuclei, a reduced number of nuclear segments, and coarse clumping of the nuclear chromatin. In 1931, Gauthier Jean Huet (1879-1970), a Dutch Pediatrician, identified it as an inherited disorder.
It is a genetic disorder with an autosomal dominant inheritance pattern. Heterozygotes are clinically normal, although their neutrophils may be mistaken for immature cells, which may cause mistreatment in a clinical setting. Homozygotes tend to have neutrophils with rounded nuclei that do have some functional problems. Homozygous individuals inconsistently have skeletal anomalies such as post-axial polydactyly, short metacarpals, short upper limbs, short stature, or hyperkyphosis.
Identifying Pelger–Huët anomaly is important to differentiate from bandemia with a left-shifted peripheral blood smear and neutrophilic band forms and from an increase in young neutrophilic forms that can be observed in association with infection.
These lesions usually present in neonates, although they may not come to clinical attention until adulthood (for cosmetic reasons). There is no gender predilection. They are present in approximately 3-6 per 1000 live births.
Nager syndrome is thought to be caused by haploinsufficiency of the spliceosomal factor SF3B4.
The Aagenæs syndrome or Aagenaes syndrome is a syndrome characterised by congenital hypoplasia of lymph vessels, which causes lymphedema of the legs and recurrent cholestasis in infancy, and slow progress to hepatic cirrhosis and giant cell hepatitis with fibrosis of the portal tracts.
The genetic cause is unknown, but it is autosomal recessively inherited and the gene is located to chromosome 15q. A common feature of the condition is a generalised lymphatic anomaly, which may be indicative of the defect being lymphangiogenetic in origin. The condition is particularly frequent in southern Norway, where more than half the cases are reported from, but is found in patients in other parts of Europe and the United States. It is named after Øystein Aagenæs, a Norwegian paediatrician.
It is also called cholestasis-lymphedema syndrome (CLS).
The cause of this condition is not known. A genetic basis is suspected. More than one case have been reported in three families.
Fleischer's syndrome is an extremely rare congenital anomaly characterized by displacement of the nipples, occasional polymastia, and hypoplasia of both kidneys.
Nager acrofacial dysostosis is a genetic congenital anomaly syndrome. Nager syndrome displays several or all of the following characteristics: underdevelopment of the cheek and jaw area, down-sloping of the opening of the eyes, lack or absence of the lower eyelashes, kidney or stomach reflux, hammer toes, shortened soft palate, lack of development of the internal and external ear, possible cleft palate, underdevelopment or absence of the thumb, hearing loss (see hearing loss with craniofacial syndromes) and shortened forearms, as well as poor movement in the elbow, and may be characterized by accessory tragi. Occasionally, affected individuals develop vertebral anomalies such as scoliosis. The inheritance pattern is said to be autosomal but there are arguments as to whether it is autosomal dominant or autosomal recessive. Most cases tend to be sporadic. Nager syndrome is also linked to five other similar syndromes: Miller syndrome, Treacher Collins, Pierre Robin, Genee-Wiedemann, and Franceschetti-Zwahlen-Klein.
SHORT syndrome is a medical condition in which affected individuals have multiple birth defects in different organ systems.
It was characterized in 1975.
Reticular pigmented anomaly of the flexures (also known as "dark dot disease", and "Dowling–Degos' disease") is a fibrous anomaly of the flexures or bending parts of the axillae, neck and inframammary/sternal areas. It is an autosomal-dominant pigmentary disorder that may appear in adolescence or adulthood. This condition is due to mutations in structural/desmosomal proteins found within stratified squamous epithelium.
Dark dot disease is associated with "KRT5".
The varied signs and symptoms of Duane-radial ray syndrome often overlap with features of other disorders.
- For example, acro-renal-ocular syndrome is characterized by Duane anomaly and other eye abnormalities, radial ray malformations, and kidney defects. Both conditions can be caused by mutations in the same gene. Based on these similarities, researchers are investigating whether Duane-radial ray syndrome and acro-renal-ocular syndrome are separate disorders or part of a single syndrome with many possible signs and symptoms.
- The features of Duane-radial ray syndrome also overlap with those of a condition called Holt-Oram syndrome; however, these two disorders are caused by mutations in different genes.
Facial femoral syndrome is a rare congenital disorder. It is also known as femoral dysgenesis, bilateral femoral dysgenesis, bilateral-Robin anomaly and femoral hypoplasia-unusual facies syndrome. The main features of this disorder are underdeveloped thigh bones (femurs) and unusual facial features.
Neutrophilia is an increase in the absolute neutrophil count in the peripheral circulation. Normal blood values vary by age. Neutrophilia can be caused by a direct problem with blood cells (primary disease). It can also occur as a consequence of an underlying disease (secondary). Most cases of neutrophilia are secondary to inflammation.
Primary causes
- Conditions with normally functioning neutrophils – hereditary neutrophilia, chronic idiopathic neutrophilia
- Pelger–Huet anomaly
- Down syndrome
- Leukocyte adhesion deficiency
- Familial cold urticaria
- Leukemia (chronic myelogenous (CML)) and other myeloproliferative disorders
- Surgical removal of spleen
Secondary causes
- Infection
- Chronic inflammation – especially juvenile rheumatoid arthritis, rheumatoid arthritis, Still's disease, Crohn's disease, ulcerative colitis, granulomatous infections (for example, tuberculosis), and chronic hepatitis
- Cigarette smoking – occurs in 25–50% of chronic smokers and can last up to 5 years after quitting
- Stress – exercise, surgery, general stress
- Medication induced – corticosteroids (for example, prednisone, β-agonists, lithium)
- Cancer – either by growth factors secreted by the tumor or invasion of bone marrow by the cancer
- Increased destruction of cells in peripheral circulation can stimulate bone marrow. This can occur in hemolytic anemia and idiopathic thrombocytopenic purpura
Nevus psiloliparus is a cutaneous condition, a rare scalp anomaly characterized by a variable degree of alopecia and an excessive amount of adipose tissue.
It is the main hallmark of encephalocraniocutaneous lipomatosis (ECCL), otherwise known as Haberland syndrome.
Neutrophil-specific granule deficiency (SGD, previously known as lactoferrin deficiency) is a rare congenital immunodeficiency characterized by an increased risk for pyogenic infections due to defective production of specific granules and gelatinase granules in patient neutrophils.
Duane-radial ray syndrome is caused by mutations in the "SALL4" gene which is a part of a group of genes called the SALL family. This gene plays an important role in embryonic development by providing instructions to make proteins that are involved in the formation of tissues and organs. SALL proteins act as transcription factors in that they attach themselves to certain regions in DNA in order to help control certain gene activities. Due to the mutations in the "SALL4" gene, proteins can not be made because one copy of the gene in each cell is stopped from performing its duty. These mutations are heterozygous and can be nonsense, short duplications, or deletions. At this time, there is no clear reason as to why a reduced amount of the SALL4 protein causes the symptoms of Duane-radial ray syndrome and similar conditions.
Duane-radial ray syndrome is inherited through autosomal dominance meaning that a mutation in one copy of the SALL 4 gene is all it takes to cause this syndrome. Those with this condition can have affected parents, but it can also manifest for the first time with no family history which is called de novo. Since Duane-radial ray syndrome is an autosomal dominant disorder, there is a 50% chance of passing the mutation on to offspring.
Microspherophakia is a rare congenital autosomal recessive condition where the lens of the eye is smaller than normal and spherically shaped. This condition may be associated with a number of disorders including Peter's anomaly, Marfan syndrome, and Weill–Marchesani syndrome. The spherical shape is caused by an underdeveloped zonule of Zinn, which doesn't exert enough force on the lens to make it form the usual oval shape. It is a result of a homozygous mutation to the LTBP2 gene.
Estimation of the frequency of SGD is difficult, as it is an extremely rare disease with few cases reported in literature. The condition was first reported in 1980, and since only a handful more cases have been published.
The molecular genetics of Axenfeld syndrome are poorly understood, but centers on three genes identified by cloning of chromosomal breakpoints from patients.
This disorder is inheritable as an autosomal dominant trait, which means the defective gene is located on an autosome, and only one copy of the gene is sufficient to cause the disorder when inherited from a parent who has the disorder. As shown in the diagram, this gives a 50/50 chance of offspring inheriting the condition from an affected parent.
Axenfeld syndrome (also known as Axenfeld-Rieger syndrome or Hagedoom syndrome) is a rare autosomal dominant disorder, which affects the development of the teeth, eyes, and abdominal region.
Wildervanck syndrome or cervico-oculo-acoustic syndrome comprises a triad of:
- Duane syndrome
- Klippel-Feil anomaly (fused cervical vertebrae)
- congenital hearing loss
Shprintzen–Goldberg syndrome is a multiple anomaly syndrome that has craniosynostosis, multiple abdominal hernias, cognitive impairment, and other skeletal malformations as key features. Several reports have linked the syndrome to a mutation in the "FBN1" gene, but these cases do not resemble those initially described in the medical literature in 1982 by Shprintzen and Goldberg, and Greally et al. in 1998 failed to find a causal link to FBN1. At this time, the cause of Shprintzen–Goldberg syndrome remains uncertain. The syndrome is rare with fewer than 50 cases described in the medical literature to date.
SHORT is an acronym for short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, rieger anomaly and teething delay.
Other characteristics common in SHORT syndrome are a triangular face, small chin with a dimple, a loss of fat under the skin (lipodystrophy), abnormal position of the ears, hearing loss and delayed speech.
This is rare and is usually due to mutations in the R-spondin 4 (RSPO4) gene which is located on the short arm of chromosome 20 (20p13). Clinically it is manifest by the absence (anonychia) or hypoplasia (hyponuchia) of finger- and/or toenails.
Stratton parker syndrome is a rare disorder characterized by short stature, wormian bones (extra cranial bones), and dextrocardia (displaced heart). Other symptoms include dermatoglyphics, tooth deformities or missing teeth, abnormal kidney development, shortened limbs, mental retardation, undescended testes or cryptorchidism, and anal atresia. The condition was first described by Stratton and Parker in 1989, and there have been only four reported cases worldwide. Two cases of the syndrome were reported by Gilles-Eric Seralini in 2010 after having been contacted in January 2009.
Alternative names include "Growth Hormone Deficiency with Wormian Bones, Cardiac Anomaly, and Brachycamptodactyly" and "Short stature wormian bones dextrocardia"