Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
An increased risk of tardive dyskinesia has been associated with smoking in some studies, although a negative study does exist. There seems to be a cigarette smoke-exposure-dependent risk for TD in antipsychotic-treated patients. Elderly patients are also at a heightened risk for developing TD, as are females and those with organic brain injuries or diabetes mellitus and those with the negative symptoms of schizophrenia. TD is also more common in those that experience acute neurological side effects from antipsychotic drug treatment. Racial discrepancies in TD rate also exist, with Africans and African Americans having higher rates of TD after exposure to antipsychotics. Certain genetic risk factors for TD have been identified including polymorphisms in the genes encoding the D, 5-HT and 5-HT receptors.
Currently, an estimated 60 to 75% of diagnosed dementias are of the Alzheimer's and mixed (Alzheimer's and vascular dementia) type, 10 to 15% are Lewy body type, with the remaining types being of an entire spectrum of dementias, including frontotemporal lobar degeneration (Pick's disease), alcoholic dementia, pure vascular dementia, etc. Dementia with Lewy bodies tends to be under-recognized. Dementia with Lewy bodies is slightly more prevalent in men than women. DLB increases in prevalence with age; the mean age at presentation is 75 years.
Dementia with Lewy bodies affects about one million individuals in the United States.
Tardive dyskinesia most commonly occurs in patients with psychiatric conditions who are treated with antipsychotic medications for many years. The average prevalence rate has been estimated to be around 30% for individuals taking antipsychotic medication, such as that used to treat schizophrenia. A study being conducted at the Yale University School of Medicine has estimated that "32% of patients develop persistent tics after 5 years on major tranquilizers, 57% by 15 years, and 68% by 25 years." More drastic data was found during a longitudinal study conducted on individuals 45 years of age and older who were taking antipsychotic drugs. According to this research study, 26% of patients developed tardive dyskinesia after just one year on the medication. Another 60% of this at-risk group developed the disorder after 3 years, and 23% developed "severe" cases of tardive dyskinesia within 3 years. According to these estimates, the majority of patients will eventually develop the disorder if they remain on the drugs long enough.
Elderly patients are more prone to develop tardive dyskinesia, and elderly women are more at-risk than elderly men. The risk is much lower for younger men and women, and also more equal across the sexes. Patients who have undergone electro-convulsive therapy or have a history of diabetes or alcohol abuse also have a higher risk of developing tardive dyskinesia.
Several studies have recently been conducted comparing the prevalence rate of tardive dyskinesia with second generation, or more modern, antipsychotic drugs to that of first generation drugs. The newer antipsychotics appear to have a substantially reduced potential for causing tardive dyskinesia. However, some studies express concern that the prevalence rate has decreased far less than expected, cautioning against the overestimation of the safety of modern antipsychotics.
A physician can evaluate and diagnose a patient with tardive dyskinesia by conducting a systematic examination. The physician should ask the patient to relax, and look for symptoms like facial grimacing, eye or lip movements, tics, respiratory irregularities, and tongue movements. In some cases, patients experience nutritional problems, so a physician can also look for a gain or loss in weight.
Apart from the underlying psychiatric disorder, tardive dyskinesia may cause afflicted people to become socially isolated. It also increases the risk of dysmorphophobia and can even lead to suicide. Emotional or physical stress can increase the severity of dyskinetic movements, whereas relaxation and sedation have the opposite effect.
There is currently no effective treatment or cure for PSP, although some of the symptoms can respond to nonspecific measures. The average age at symptoms onset is 63 and survival from onset averages 7 years with a wide variance. Pneumonia is a frequent cause of death.
A July, 2012, study suggested that mesenchymal stem cell therapy could delay the progression of neurological deficits in patients with MSA-cerebellar type, suggesting the potential of mesenchymal stem cell therapy as a treatment candidate of MSA.
MSA usually progresses more quickly than Parkinson's disease. There is no remission from the disease. The average remaining lifespan after the onset of symptoms in patients with MSA is 7.9 years. Almost 80% of patients are disabled within five years of onset of the motor symptoms, and only 20% survive past 12 years. Rate of progression differs in every case and speed of decline may vary widely in individual patients.
O’Sullivan and colleagues (2008) identified early autonomic dysfunction to be the most important early clinical prognostic feature regarding survival in MSA. Patients with concomitant motor and autonomic dysfunction within three years of symptom onset had a shorter survival duration, in addition to becoming wheelchair dependent and bed-ridden at an earlier stage than those who developed these symptoms after three years from symptom onset. Their study also showed that when patients with early autonomic dysfunction develop frequent falling, or wheelchair dependence, or severe dysphagia, or require residential care, there is a shorter interval from this point to death.
Parkinson-plus syndromes are usually more rapidly progressive and less likely to respond to antiparkinsonian medication than PD. However, the additional features of the diseases may respond to medications not used in PD.
Current therapy for Parkinson-plus syndromes is centered around a multidisciplinary treatment of symptoms.
These disorders have been linked to pesticide exposure.
Parkinson-plus syndromes, also known as disorders of multiple system degeneration, is a group of neurodegenerative diseases featuring the classical features of Parkinson's disease (tremor, rigidity, akinesia/bradykinesia, and postural instability) with additional features that distinguish them from simple idiopathic Parkinson's disease (PD). Some consider Alzheimer's disease to be in this group. Parkinson-plus syndromes are either inherited genetically or occur sporadically.
The atypical parkinsonian or Parkinson-plus syndromes are often difficult to differentiate from PD and each other. They include multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Dementia with Lewy bodies (DLB), may or may not be part of the PD spectrum, but it is increasingly recognized as the second-most common type of neurodegenerative dementia after Alzheimer's disease. These disorders are currently lumped into two groups, the synucleinopathies and the tauopathies. They may coexist with other pathologies.
Additional Parkinson-plus syndromes include Pick's disease and olivopontocerebellar atrophy. The latter is characterized by ataxia and dysarthria, and may occur either as an inherited disorder or as a variant of multiple system atrophy. MSA is also characterized by autonomic failure, formerly known as Shy–Drager syndrome.
Clinical features that distinguish Parkinson-plus syndromes from idiopathic PD include symmetrical onset, a lack of or irregular resting tremor, and a reduced response to dopaminergic drugs (including levodopa). Additional features include bradykinesia, early-onset postural instability, increased rigidity in axial muscles, dysautonomia, alien limb syndrome, supranuclear gaze palsy, apraxia, involvement of the cerebellum including the pyramidal cells, and in some instances significant cognitive impairment.
Surgery, such as the denervation of selected muscles, may also provide some relief; however, the destruction of nerves in the limbs or brain is not reversible and should be considered only in the most extreme cases. Recently, the procedure of deep brain stimulation (DBS) has proven successful in a number of cases of severe generalised dystonia. DBS as treatment for medication-refractory dystonia, on the other hand, may increase the risk of suicide in patients. However, reference data of patients without DBS therapy are lacking.
The cause of PSP is unknown. Fewer than 1% of those with PSP have a family member with the same disorder. A variant in the gene for tau protein called the H1 haplotype, located on chromosome 17, has been linked to PSP. Nearly all people with PSP received a copy of that variant from each parent, but this is true of about two-thirds of the general population. Therefore, the H1 haplotype appears to be necessary but not sufficient to cause PSP. Other genes, as well as environmental toxins, are being investigated as other possible contributors to the cause of PSP.
Dementia with Lewy bodies (DLB) is a type of dementia that worsens over time. Additional symptoms may include fluctuations in alertness, visual hallucinations, slowness of movement, trouble walking, and rigidity. Excessive movement during sleep and mood changes such as depression are also common.
The cause is unknown. Typically, no family history of the disease exists among those affected. The underlying mechanism involves the buildup of Lewy bodies, clumps of alpha-synuclein protein in neurons. It is classified as a neurodegenerative disorder. A diagnosis may be suspected based on symptoms, with blood tests and medical imaging done to rule out other possible causes. The differential diagnosis includes Parkinson's and Alzheimer's.
At present there is no cure. Treatments are supportive and attempt to relieve some of the motor and psychological symptoms associated with the disease. Acetylcholinesterase inhibitors, such as donepezil, may provide some benefit. Some motor problems may improve with levodopa. Antipsychotics, even for hallucinations, should generally be avoided due to side effects.
DLB is the most common cause of dementia after Alzheimer's disease and vascular dementia. It typically begins after the age of 50. About 0.1% of those over 65 are affected. Men appear to be more commonly affected than women. In the late part of the disease, people may depend entirely on others for their care. Life expectancy following diagnosis is about eight years. The abnormal deposits that cause the disease were discovered in 1912 by Frederic Lewy.
Mobility issues associated with falls and freezing of gait have a devastating impact in the lives of PD patients. Fear of falling in itself can have an incapacitating effect in PD patients and can result in social seclusion leaving patients largely isolated leading to depression. Immobility can also lead to osteoporosis which in-turn facilitates future fracture development. This then becomes a vicious circle with falls leading to immobility and immobility facilitating future falls. Hip fractures from falls are the most common form of fracture among PD patients. Fractures increase treatment costs associated with health care expenditures in PD. Also, when gait is affected it often heralds the onset of Lewy body dementia.
This condition is very rare, only affecting one in two million people. It is more common in females than in males. There are several hundred cases in the United States, 25 known cases in the United Kingdom, and less than that in Australia and New Zealand.
"Primary dystonia" is suspected when the dystonia is the only sign and there is no identifiable cause or structural abnormality in the central nervous system. It is suspected to be caused by a pathology of the central nervous system, likely originating in those parts of the brain concerned with motor function, such as the basal ganglia, and the GABA (gamma-aminobutyric acid) producing Purkinje neurons. The precise cause of primary dystonia is unknown. In many cases it may involve some genetic predisposition towards the disorder combined with environmental conditions.
"Secondary dystonia" refers to dystonia brought on by some identified cause, such as head injury, drug side effect (e.g. tardive dystonia), or neurological disease (e.g. Wilson's disease).
Meningitis and encephalitis caused by viral, bacterial, and fungal infections of the brain have been associated with dystonia. The main mechanism is inflammation of the blood vessels, causing restriction of blood flow to the basal ganglia. Other mechanisms include direct nerve injury by the organism or a toxin, or autoimmune mechanisms.
Environmental and task-related factors are suspected to trigger the development of focal dystonias because they appear disproportionately in individuals who perform high precision hand movements such as musicians, engineers, architects, and artists. Chlorpromazine can also cause dystonia, which can be often misjudged as a seizure.
Neuroleptic drugs often cause dystonia, including oculogyric crisis.
Misfunction of the sodium-potassium pump may be a factor in some dystonias. The - pump has been shown to control and set the intrinsic activity mode of cerebellar Purkinje neurons. This suggests that the pump might not simply be a homeostatic, "housekeeping" molecule for ionic gradients; but could be a computational element in the cerebellum and the brain. Indeed, an ouabain block of - pumps in the cerebellum of a live mouse results in it displaying ataxia and dystonia. Ataxia is observed for lower ouabain concentrations, dystonia is observed at higher ouabain concentrations. A mutation in the - pump (ATP1A3 gene) can cause rapid onset dystonia parkinsonism. The parkinsonism aspect of this disease is thought to be attributable to malfunctioning - pumps in the basal ganglia; the dystonia aspect is thought to be attributable to malfunctioning - pumps in the cerebellum (that act to corrupt its input to the basal ganglia) possibly in Purkinje neurons.
Cerebellum issues causing dystonia is described by Filip et al. 2013: "Although dystonia has traditionally been regarded as a basal ganglia dysfunction, recent provocative evidence has emerged of cerebellar involvement in the pathophysiology of this enigmatic disease. It has been suggested that the cerebellum plays an important role in dystonia etiology, from neuroanatomical research of complex networks showing that the cerebellum is connected to a wide range of other central nervous system structures involved in movement control to animal models indicating that signs of dystonia are due to cerebellum dysfunction and completely disappear after cerebellectomy, and finally to clinical observations in secondary dystonia patients with various types of cerebellar lesions. It is proposed that dystonia is a large-scale dysfunction, involving not only cortico-basal ganglia-thalamo-cortical pathways, but the cortico-ponto-cerebello-thalamo-cortical loop as well. Even in the absence of traditional "cerebellar signs" in most dystonia patients, there are more subtle indications of cerebellar dysfunction. It is clear that as long as the cerebellum's role in dystonia genesis remains unexamined, it will be difficult to significantly improve the current standards of dystonia treatment or to provide curative treatment."
Patients with severe forms of MJD have a life expectancy of approximately 35 years. Those with mild forms have a normal life expectancy. The cause of death of those who die early is often aspiration pneumonia.
Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).
Although all early reported cases occurred in the Philippines, X-linked dystonia parkinsonism has been diagnosed in the US, Canada, and Germany in people of Filipino descent. The prevalence in the Philippines has been estimated at 1/322,000 and as high as 1/4,000 in the province of Capiz's male population. As x-linked recessive disease, the majority of those affected are males with females generally asymptomatic carriers. In the largest described series, the mean age of onset was 39.7 years, the mean duration of illness was 16 years, and the mean age of death was 55.6 years.
Parkinsonian gait (or festinating gait, from Latin "festinare" [to hurry]) is the type of gait exhibited by patients suffering from Parkinson's disease (PD). This disorder is caused by a deficiency of dopamine in the basal ganglia circuit leading to motor deficits. Gait is one of the most affected motor characteristics of this disorder although symptoms of Parkinson's disease are varied.
Parkinsonian gait is characterized by small shuffling steps and a general slowness of movement (hypokinesia), or even the total loss of movement (akinesia) in the extreme cases. Patients with PD demonstrate reduced stride length and walking speed during free ambulation while double support duration and cadence rate are increased. The patient has difficulty starting, but also has difficulty stopping after starting. This is due to muscle hypertonicity.
Tremor can be a symptom associated with disorders in those parts of the brain that control muscles throughout the body or in particular areas, such as the hands. Neurological disorders or conditions that can produce tremor include multiple sclerosis, stroke, traumatic brain injury, chronic kidney disease and a number of neurodegenerative diseases that damage or destroy parts of the brainstem or the cerebellum, Parkinson's disease being the one most often associated with tremor. Other causes include the use of drugs (such as amphetamines, cocaine, caffeine, corticosteroids, SSRIs) or alcohol, mercury poisoning, or the withdrawal of drugs such as alcohol or benzodiazepine. Tremors can also be seen in infants with phenylketonuria (PKU), overactive thyroid or liver failure. Tremors can be an indication of hypoglycemia, along with palpitations, sweating and anxiety.
Tremor can also be caused from lack of sleep, lack of vitamins, or increased stress. Deficiencies of magnesium and thiamine have also been known to cause tremor or shaking, which resolves when the deficiency is corrected. See magnesium in biology. Some forms of tremor are inherited and run in families, while others have no known cause. Tremors can also be caused by some spider bites, e.g. the redback spider of Australia.
Characteristics may include a rhythmic shaking in the hands, arms, head, legs, or trunk; shaky voice; and problems holding things such as a fork or pen. Some tremors may be triggered by or become exacerbated during times of stress or strong emotion, when the individual is physically exhausted, or during certain postures or movements.
Tremor may occur at any age but is most common in middle-age and older persons. It may be occasional, temporary, or occur intermittently. Tremor affects men and women equally.
X-linked dystonia parkinsonism is thought to result from a mutation of the TAF1 (TATA-binding protein-associated factor 1) gene at Xq13.1. It has an X-linked, recessive pattern of inheritance. Genetic analysis suggests that the responsible mutation was introduced into the Ilongo ethnic group of the Panay Island over 2000 years ago.
Machado–Joseph disease (MJD), also known as Machado–Joseph Azorean disease, Machado's disease, Joseph's disease or spinocerebellar ataxia type 3 (SCA3), is a rare autosomal dominantly inherited neurodegenerative disease that causes progressive cerebellar ataxia, which results in a lack of muscle control and coordination of the upper and lower extremities. The symptoms are caused by a genetic mutation that results in an expansion of abnormal "CAG" trinucleotide repeats in the ATXN3 gene that results in an abnormal form of the protein ataxin which causes degeneration of cells in the hindbrain. Some symptoms, such as clumsiness and rigidity, make MJD commonly mistaken for drunkenness or Parkinson's disease.
Machado–Joseph disease is a type of spinocerebellar ataxia and is the most common cause of autosomal-dominant ataxia. MJD causes ophthalmoplegia and mixed sensory and cerebellar ataxia.
Tremor is most commonly classified by clinical features and cause or origin. Some of the better known forms of tremor, with their symptoms, include the following:
- Cerebellar tremor (also known as intention tremor) is a slow, broad tremor of the extremities that occurs at the end of a purposeful movement, such as trying to press a button or touching a finger to the tip of one’s nose. Cerebellar tremor is caused by lesions in or damage to the cerebellum resulting from stroke, tumor, or disease such as multiple sclerosis or some inherited degenerative disorder. It can also result from chronic alcoholism or overuse of some medicines. In classic cerebellar tremor, a lesion on one side of the brain produces a tremor in that same side of the body that worsens with directed movement. Cerebellar damage can also produce a “wing-beating” type of tremor called rubral or Holmes’ tremor — a combination of rest, action, and postural tremors. The tremor is often most prominent when the affected person is active or is maintaining a particular posture. Cerebellar tremor may be accompanied by other manifestations of ataxia, including dysarthria (speech problems), nystagmus (rapid, involuntary rolling of the eyes), gait problems and postural tremor of the trunk and neck. "Titubation" is tremor of the head and is of cerebellar origin.
- Dystonic tremor occurs in individuals of all ages who are affected by dystonia, a movement disorder in which sustained involuntary muscle contractions cause twisting and repetitive motions and/or painful and abnormal postures or positions. Dystonic tremor may affect any muscle in the body and is seen most often when the patient is in a certain position or moves a certain way. The pattern of dystonic tremor may differ from essential tremor. Dystonic tremors occur irregularly and often can be relieved by complete rest. Touching the affected body part or muscle may reduce tremor severity (a geste antagoniste). The tremor may be the initial sign of dystonia localized to a particular part of the body.
- Essential tremor (sometimes called benign essential tremor) is the most common of the more than 20 types of tremor. Although the tremor may be mild and nonprogressive in some people, in others, the tremor is slowly progressive, starting on one side of the body but affecting both sides within 3 years. The hands are most often affected but the head, voice, tongue, legs, and trunk may also be involved. Head tremor may be seen as a vertical or horizontal motion. Essential tremor may be accompanied by mild gait disturbance. Tremor frequency may decrease as the person ages, but the severity may increase, affecting the person’s ability to perform certain tasks or activities of daily living. Heightened emotion, stress, fever, physical exhaustion, or low blood sugar may trigger tremors or increase their severity. Onset is most common after age 40, although symptoms can appear at any age. It may occur in more than one family member. Children of a parent who has essential tremor have a 50 percent chance of inheriting the condition. Essential tremor is not associated with any known pathology.
- Orthostatic tremor is characterized by fast (>12 Hz) rhythmic muscle contractions that occur in the legs and trunk immediately after standing. Cramps are felt in the thighs and legs and the patient may shake uncontrollably when asked to stand in one spot. No other clinical signs or symptoms are present and the shaking ceases when the patient sits or is lifted off the ground. The high frequency of the tremor often makes the tremor look like rippling of leg muscles while standing. Orthostatic tremor may also occur in patients who have essential tremor, and there might be an overlap between these categories of tremor.
- Parkinsonian tremor is caused by damage to structures within the brain that control movement. This resting tremor, which can occur as an isolated symptom or be seen in other disorders, is often a precursor to Parkinson's disease (more than 25 percent of patients with Parkinson’s disease have an associated action tremor). The tremor, which is classically seen as a "pill-rolling" action of the hands that may also affect the chin, lips, legs, and trunk, can be markedly increased by stress or emotion. Onset is generally after age 60. Movement starts in one limb or on one side of the body and usually progresses to include the other side.
- Physiological tremor occurs in every normal individual and has no clinical significance. It is rarely visible and may be heightened by strong emotion (such as anxiety or fear), physical exhaustion, hypoglycemia, hyperthyroidism, heavy metal poisoning, stimulants, alcohol withdrawal or fever. It can be seen in all voluntary muscle groups and can be detected by extending the arms and placing a piece of paper on top of the hands. Enhanced physiological tremor is a strengthening of physiological tremor to more visible levels. It is generally not caused by a neurological disease but by reaction to certain drugs, alcohol withdrawal, or medical conditions including an overactive thyroid and hypoglycemia. It is usually reversible once the cause is corrected. This tremor classically has a frequency of about 10 Hz
- tremor (also called hysterical tremor) can occur at rest or during postural or kinetic movement. The characteristics of this kind of tremor may vary but generally include sudden onset and remission, increased incidence with stress, change in tremor direction and/or body part affected, and greatly decreased or disappearing tremor activity when the patient is distracted. Many patients with psychogenic tremor have a conversion disorder (see Posttraumatic stress disorder) or another psychiatric disease.
- Rubral tremor is characterized by coarse slow tremor which is present at rest, at posture and with intention. This tremor is associated with conditions which affect the red nucleus in the midbrain, classically unusual strokes.
Tremor can result from other conditions as well
- Alcoholism, excessive alcohol consumption, or alcohol withdrawal can kill certain nerve cells, resulting in a tremor known as asterixis. Conversely, small amounts of alcohol may help to decrease familial and essential tremor, but the mechanism behind it is unknown. Alcohol potentiates GABAergic transmission and might act at the level of the inferior olive.
- Tremor in peripheral neuropathy may occur when the nerves that supply the body’s muscles are traumatized by injury, disease, abnormality in the central nervous system, or as the result of systemic illnesses. Peripheral neuropathy can affect the whole body or certain areas, such as the hands, and may be progressive. Resulting sensory loss may be seen as a tremor or ataxia (inability to coordinate voluntary muscle movement) of the affected limbs and problems with gait and balance. Clinical characteristics may be similar to those seen in patients with essential tremor.
- Tobacco withdrawal symptoms include tremor.
- Most of the symptoms can also occur randomly when panicked.
Blocq's disease was first considered by Paul Blocq (1860–1896), who described this phenomenon as the loss of memory of specialized movements causing the inability to maintain an upright posture, despite normal function of the legs in the bed. The patient is able to stand up, but as soon as the feet are on the ground, the patient cannot hold himself upright nor walk; however when lying down, the subject conserved the integrity of muscular force and the precision of movements of the lower limbs. The motivation of this study came when a fellow student Georges Marinesco (1864) and Paul published a case of parkinsonian tremor (1893) due to a tumor located in the substantia nigra.
In the third paper published by Paul Blocq, he was trying to determine the neurophysiology behind this disease by relating the cerebral cortex (the decision making) and the spinal cord (the decision executer). His hypothesis was that there would exist an inhibitory influence which exerted and influenced the cortical or spinal centers for standing and walking.
Neuroferritinopathy or adult-onset basal ganglia disease is a genetic neurodegenerative disorder characterized by the accumulation of iron in the basal ganglia, cerebellum, and motor cortex of the human brain. Symptoms, which are extrapyramidal in nature, progress slowly and generally do not become apparent until adulthood. These symptoms include chorea, dystonia, and cognitive deficits which worsen with age.
This disorder is autosomal dominant and is caused by mutations in the gene encoding the light chain subunit of the ferritin protein. Wild type ferritin functions as a buffer for iron, sequestering it and controlling its release. Thus, mutations in the light chain of ferritin result in the accumulation of iron in the brain which can be imaged using MRI. Currently, neuroferritinopathy is the only neurodegenerative disease with an iron accumulation in the brain classified as an autosomal dominant syndrome.
Treatment of neuroferritinopathy is focused on managing symptoms associated with chorea and dystonia using standard medications for each. The disorder is progressive and symptoms become worse with age. Fewer than 100 cases of neuroferritinopathy have been reported since its identification in 2001. Its incidence has been largely localized to Northeast England suggesting a founder effect. Due to its genetic nature, current research is focused on therapeutic management of the symptoms caused by the disorder.
All brain iron disorders were previously labeled Hallervorden-Spatz syndrome, after the scientists who first discovered individuals with abnormal iron levels in 1922. Brain iron disorders are now divided into three categories: genetic neurodegeneration with brain iron accumulation, genetic systemic iron accumulation with neurologic features, and acquired diseases associated with iron excess or iron deficiency. Neuroferritinopathy is classified under the first category, genetic neurodegeneration with brain iron accumulation. Neuroferritinopathy is classified as a late-onset basal ganglia disease and is a dominantly inherited neurodegenerative disease. Four different alleles are responsible for neuroferritinopathy. Three arise from nucleotide insertions in the ferritin light chain (FTL) polypeptide gene while the fourth arises from a missense mutation in the FTL gene.