Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Patients with abortive polio infections recover completely. In those who develop only aseptic meningitis, the symptoms can be expected to persist for two to ten days, followed by complete recovery. In cases of spinal polio, if the affected nerve cells are completely destroyed, paralysis will be permanent; cells that are not destroyed, but lose function temporarily, may recover within four to six weeks after onset. Half the patients with spinal polio recover fully; one-quarter recover with mild disability, and the remaining quarter are left with severe disability. The degree of both acute paralysis and residual paralysis is likely to be proportional to the degree of viremia, and inversely proportional to the degree of immunity. Spinal polio is rarely fatal.
Without respiratory support, consequences of poliomyelitis with respiratory involvement include suffocation or pneumonia from aspiration of secretions. Overall, 5 to 10 percent of patients with paralytic polio die due to the paralysis of muscles used for breathing. The case fatality rate (CFR) varies by age: 2 to 5 percent of children and up to 15 to 30 percent of adults die. Bulbar polio often causes death if respiratory support is not provided; with support, its CFR ranges from 25 to 75 percent, depending on the age of the patient. When intermittent positive pressure ventilation is available, the fatalities can be reduced to 15 percent.
In 1950, William Hammon at the University of Pittsburgh purified the gamma globulin component of the blood plasma of polio survivors. Hammon proposed the gamma globulin, which contained antibodies to poliovirus, could be used to halt poliovirus infection, prevent disease, and reduce the severity of disease in other patients who had contracted polio. The results of a large clinical trial were promising; the gamma globulin was shown to be about 80 percent effective in preventing the development of paralytic poliomyelitis. It was also shown to reduce the severity of the disease in patients who developed polio. Due to the limited supply of blood plasma gamma globulin was later deemed impractical for widespread use and the medical community focused on the development of a polio vaccine.
At the October 23 meeting of the Child Neurology Society, it was a matter of debate whether acute flaccid myelitis would be likely to return the next year. Enteroviruses D68 and A71 tend to cause neurological symptoms more often than other enteroviruses, but have been infrequent causes of colds. It is possible that enteroviruses have been causing acute flaccid myelitis at a very low rate for many years, misdiagnosed as transverse myelitis, and enterovirus 68 simply happened to become more prevalent in the 2014 season.
The CDC had confirmed 538 cases of enterovirus 68 infection in 43 states. The CDC has determined and submitted to GenBank complete or nearly-complete genomic sequences for three known strains of the virus, which are "genetically related to strains of EV-D68 that were detected in previous years in the United States, Europe, and Asia."
While rates of paralytic symptoms appear to be correlated with the number of respiratory infections, in initial anecdotal reports the cases are not clustered within a family or school, suggesting that the paralysis "per se" is not directly contagious, but arises as a very rare complication of the common respiratory infection.
In 2012, the World Health Organization estimated that vaccination prevents 2.5 million deaths each year. If there is 100% immunization, and 100% efficacy of the vaccines, one out of seven deaths among young children could be prevented, mostly in developing countries, making this an important global health issue. Four diseases were responsible for 98% of vaccine-preventable deaths: measles, "Haemophilus influenzae" serotype b, pertussis, and neonatal tetanus.
The Immunization Surveillance, Assessment and Monitoring program of the WHO monitors and assesses the safety and effectiveness of programs and vaccines at reducing illness and deaths from diseases that could be prevented by vaccines.
Vaccine-preventable deaths are usually caused by a failure to obtain the vaccine in a timely manner. This may be due to financial constraints or to lack of access to the vaccine. A vaccine that is generally recommended may be medically inappropriate for a small number of people due to severe allergies or a damaged immune system. In addition, a vaccine against a given disease may not be recommended for general use in a given country, or may be recommended only to certain populations, such as young children or older adults. Every country makes its own vaccination recommendations, based on the diseases that are common in its area and its healthcare priorities. If a vaccine-preventable disease is uncommon in a country, then residents of that country are unlikely to receive a vaccine against it. For example, residents of Canada and the United States do not routinely receive vaccines against yellow fever, which leaves them vulnerable to infection if travelling to areas where risk of yellow fever is highest (endemic or transitional regions).
The CDC MMWR report advised, "To prevent infections in general, persons should stay home if they are ill, wash their hands often with soap and water, avoid close contact (such as touching and shaking hands) with those who are ill, and clean and disinfect frequently touched surfaces."
Unlike polio, acute flaccid myelitis can not currently be prevented with a vaccine.
The WHO lists 25 diseases for which vaccines are available:
1. Measles
2. Rubella
3. Cholera
4. Meningococcal disease
5. Influenza
6. Diphtheria
7. Mumps
8. Tetanus
9. Hepatitis A
10. Pertussis
11. Tuberculosis
12. Hepatitis B
13. Pneumoccocal disease
14. Typhoid fever
15. Hepatitis E
16. Poliomyelitis
17. Tick-borne encephalitis
18. Haemophilus influenzae type b
19. Rabies
20. Varicella and herpes zoster (shingles)
21. Human papilloma-virus
22. Rotavirus gastroenteritis
23. Yellow fever
24. Japanese encephalitis
25. Malaria
26. Dengue fever
Meningitis is a very common in children. Newborns can develop herpes virus infections through contact with infected secretions in the birth canal. Other viral infections are acquired by breathing air contaminated with virus-containing droplets exhaled by an infected person. Arbovirus infections are acquired from bites by infected insects (called epidemic encephalitis). Viral central nervous system infections in newborns and infants usually begin with fever. The inability of infants to communicate directly makes it difficult to understand their symptoms. Newborns may have no other symptoms and may initially not otherwise appear ill. Infants older than a month or so typically become irritable and fussy and refuse to eat. Vomiting is common. Sometimes the soft spot on top of a newborn's head (fontanelle) bulges, indicating an increase in pressure on the brain. Because irritation of the meninges is worsened by movement, an infant with meningitis may cry more, rather than calm down, when picked up and rocked. Some infants develop a strange, high-pitched cry. Infants with encephalitis often have seizures or other abnormal movements. Infants with severe encephalitis may become lethargic and comatose and then die. To make the diagnosis of meningitis or the diagnosis of encephalitis, doctors do a spinal tap (lumbar puncture) to obtain cerebrospinal fluid (CSF) for laboratory analysis in children.
While the general prognosis is favorable, current studies indicate that West Nile Fever can often be more severe than previously recognized, with studies of various recent outbreaks indicating that it may take as long as 60–90 days to recover. People with milder WNF are just as likely as those with more severe manifestations of neuroinvasive disease to experience multiple long term (>1+ years) somatic complaints such as tremor, and dysfunction in motor skills and executive functions. People with milder illness are just as likely as people with more severe illness to experience adverse outcomes. Recovery is marked by a long convalescence with fatigue. One study found that neuroinvasive WNV infection was associated with an increased risk for subsequent kidney disease.
Risk factors independently associated with developing a clinical infection with WNV include a suppressed immune system and a patient history of organ transplantation. For neuroinvasive disease the additional risk factors include older age (>50+), male sex, hypertension, and diabetes mellitus.
A genetic factor also appears to increase susceptibility to West Nile disease. A mutation of the gene "CCR5" gives some protection against HIV but leads to more serious complications of WNV infection. Carriers of two mutated copies of "CCR5" made up 4.0 to 4.5% of a sample of West Nile disease sufferers, while the incidence of the gene in the general population is only 1.0%.
Many viral infections of the central nervous system occur in seasonal peaks or as epidemics, whereas others, such as herpes simplex encephalitis, are sporadic. In endemic areas it is mostly a disease of children, but as the disease spreads to new regions, or nonimmune travelers visit endemic regions, nonimmune adults are also affected.
The virus is most often spread by person to person contact with the stool or saliva of the infected person. Two types of vaccines have been developed to prevent the occurrence and spread of the poliomyelitis virus. The first is an inactivated, or killed, form of the virus and the second is an attenuated, or weakened, form of the virus. The development of vaccines has successfully eliminated the disease from the United States. There are continued vaccination efforts in the U.S. to maintain this success rate as this disease still occurs in some areas of the world.
After birth, other causes include toxins, severe jaundice, lead poisoning, physical brain injury, stroke, abusive head trauma, incidents involving hypoxia to the brain (such as near drowning), and encephalitis or meningitis.
In babies that are born at term risk factors include problems with the placenta, birth defects, low birth weight, breathing meconium into the lungs, a delivery requiring either the use of instruments or an emergency Caesarean section, birth asphyxia, seizures just after birth, respiratory distress syndrome, low blood sugar, and infections in the baby.
The outer shell of the rabies virus, stripped of its RNA contents and thus unable to cause disease, may be used as a vector for the delivery of unrelated genetic material in a research setting. It has the advantage over other pseudotyping methods for gene delivery that the cell targeting (tissue tropism) is more specific for the central nervous system, a difficult-to-reach site, obviating the need for invasive delivery methods. It is also capable of infecting neighboring "upstream" cells, moving from one cell to axons of the next at synapses, and is thus used for retrograde tracing in neuronal circuits.
Evidence indicates artificially increasing the permeability of the blood–brain barrier, which normally does not allow most immune cells across, promotes viral clearance.
Polioencephalitis is a viral infection of the brain, causing inflammation within the grey matter of the brain stem. The virus has an affinity for neuronal cell bodies and has been found to affect mostly the midbrain, pons, medulla and cerebellum of most infected patients. The infection can reach up through the thalamus and hypothalamus and possibly reach the cerebral hemispheres. The infection is caused by the poliomyelitis virus which is a single-stranded RNA virus surrounded by a non-enveloped capsid. Humans are the only known natural hosts of this virus. The disease has been eliminated from the U.S. since the mid-twentieth century, but is still found in certain areas of the world such as Africa.
In 2004, American teenager Jeanna Giese survived an infection of rabies unvaccinated. She was placed into an induced coma upon onset of symptoms and given ketamine, midazolam, ribavirin, and amantadine. Her doctors administered treatment based on the hypothesis that detrimental effects of rabies were caused by temporary dysfunctions in the brain and could be avoided by inducing a temporary partial halt in brain function that would protect the brain from damage while giving the immune system time to defeat the virus. After 31 days of isolation and 76 days of hospitalization, Giese was released from the hospital. She survived with all higher level brain functions intact, but an inability to walk and balance. On a 2013 podcast of NPR's "Radiolab", 9 years after her discharge from the hospital, Giese recounted: "I had to learn how to stand and then to walk, turn around, move my toes. I was really, after rabies, a newborn baby who couldn't do anything. I had to relearn that all ... mentally I knew how to do stuff but my body wouldn't cooperate with what I wanted it to do. It definitely took a toll on me psychologically. You know, I'm still recovering. I'm not completely back. Stuff like balance, and I can't run normally."
Giese's treatment regimen became known as the Milwaukee protocol, which has since undergone revision with the second version omitting the use of ribavirin. Two of 25 patients survived when treated under the first protocol. A further 10 patients have been treated under the revised protocol, with a further two survivors.
Prognosis is generally poor. If a patient survives, recovery may be prompt and complete, or protracted with sequelae, such as orchitis, hepatitis, uveitis, parotitis, desquamation or alopecia. Importantly, MARV is known to be able to persist in some survivors and to either reactivate and cause a secondary bout of MVD or to be transmitted via sperm, causing secondary cases of infection and disease.
Of the 252 people who contracted Marburg during the 2004–2005 outbreak of a particularly virulent serotype in Angola, 227 died, for a case fatality rate of 90%.
Although all age groups are susceptible to infection, children are rarely infected. In the 1998–2000 Congo epidemic, only 8% of the cases were children less than 5 years old.
MVD is caused by two viruses Marburg virus (MARV) and Ravn virus (RAVV)family Filoviridae
Marburgviruses are endemic in arid woodlands of equatorial Africa. Most marburgvirus infections were repeatedly associated with people visiting natural caves or working in mines. In 2009, the successful isolation of infectious MARV and RAVV was reported from healthy Egyptian rousettes ("Rousettus aegyptiacus") caught in caves. This isolation strongly suggests that Old World fruit bats are involved in the natural maintenance of marburgviruses and that visiting bat-infested caves is a risk factor for acquiring marburgvirus infections. Further studies are necessary to establish whether Egyptian rousettes are the actual hosts of MARV and RAVV or whether they get infected via contact with another animal and therefore serve only as intermediate hosts. Another risk factor is contact with nonhuman primates, although only one outbreak of MVD (in 1967) was due to contact with infected monkeys. Finally, a major risk factor for acquiring marburgvirus infection is occupational exposure, i.e. treating patients with MVD without proper personal protective equipment.
Contrary to Ebola virus disease (EVD), which has been associated with heavy rains after long periods of dry weather, triggering factors for spillover of marburgviruses into the human population have not yet been described.
Myelitis occurs due to various reasons such as infections. Direct infection by viruses, bacteria, mold, or parasites such as human immunodeficiency virus (HIV), human T-lymphotropic virus types I and II (HTLV-I/II), syphilis, lyme disease, and tuberculosis can cause myelitis but it can also be caused due to non-infectious or inflammatory pathway. Myelitis often follows after the infections or after vaccination. These phenomena can be explained by a theory of autoimmune attack which states that the autoimmune bodies attack its spinal cord in response to immune reaction.
The theory of autoimmune attack claims that a person with neuroimmunologic disorders have genetic predisposition to auto-immune disorder, and the environmental factors would trigger the disease. The specific genetics in myelitis is not completely understood. It is believed that the immune system response could be to viral, bacterial, fungal, or parasitic infection; however, it is not known why the immune system attacks itself. Especially, for immune system to cause inflammatory response anywhere in the central nervous system, the cells from immune system must pass through the blood brain barrier. In the case of myelitis, not only is the immune system dysfunctional, but the dysfunction also crosses this protective blood brain barrier to affect the spinal cord.
Post-polio syndrome occurs in approximately 25 to 50 percent of people who survive a poliomyelitis infection. On average, it occurs 30–35 years afterwards; however, delays of between 8–71 years have been recorded. The disease occurs sooner in persons with more severe initial infection. Other factors that increase the risk of postpolio syndrome include increasing length of time since acute poliovirus infection, presence of permanent residual impairment after recovery from the acute illness, and being female.
Post-polio syndrome is documented to occur in cases of nonparalytic polio (NPP). One review states late-onset weakness and fatigue occurs in 14 to 42 percent of NPP patients.
In some cases, spastic cerebral palsy is caused by genetic factors.
The genetic factors for spastic cerebral palsy include:
Although it has its origins in a brain injury, spastic CP can largely be thought of as a collection of orthopaedic and neuromuscular issues because of how it manifests symptomatically over the course of the person's lifespan. It is therefore not the same as "brain damage" and it need not be thought of as such. Spastic quadriplegia in particular, especially if it is combined with verbal speech challenges and strabismus, may be misinterpreted by the general population as alluding to cognitive dimensions to the disability atop the physical ones, but this is false; the intelligence of a person with any type of spastic CP is unaffected by the condition "of the spasticity itself".
In spastic cerebral palsy in children with low birth weights, 25% of children had hemiplegia, 37.5% had quadriplegia, and 37.5% had diplegia.
In general, PPS is not life-threatening. The major exception are patients left with severe residual respiratory difficulties, who may experience new severe respiratory impairment. Studies have shown that, compared to control populations, PPS patients lack any elevation of antibodies against the poliovirus, and because no poliovirus is excreted in the feces, it is not considered a recurrence of the original polio. Further, there is no evidence that the poliovirus can cause a persistent infection in humans. PPS has been confused with amyotrophic lateral sclerosis (ALS), which progressively weakens muscles. PPS patients do not have an elevated risk of ALS.
There have been no sufficient longitudinal studies on the prognosis of post-polio syndrome; however, speculations have been made by several physicians based on experience. Fatigue and mobility usually return to normal over a long period of time. The prognosis also differs depending upon different causes and factors affecting the individual. An overall mortality rate of 25 percent exists due to possible respiratory paralysis of persons with post-polio syndrome; otherwise, post-polio syndrome is usually non-lethal.
Prognosis can be abruptly changed for the worse by the use of anesthesia, such as during surgery.
Triplegia is a medical condition characterized by the paralysis of three limbs (Triplegia Muscle Anatomy) . A person with triplegia can be referred to as triplegic. While there is no typical pattern of involvement, it is usually associated with paralysis of both legs and one arm — but can also involve both arms and one leg. Triplegia can sometimes by considered a combination of hemiplegia (paralysis of arm and leg of one side of the body) overlaying diplegia (paralysis of both legs), or as quadriplegia (paralysis of four limbs) with less involvement in one extremity.
The condition is commonly associated with cerebral palsy, although conditions such as stroke can also lead to it. Triplegia has also been found to be due to an increase in intracranial pressure associated with hydrocephalus resulting from traumatic brain injury.
A similar condition is triparesis, in which the patient suffers from paresis in three limbs, meaning that the limbs are very weak, but not completely paralyzed.
In a case reported only due to its rarity, triplegia was reported following a tonsillectomy (surgical removal of the tonsils). An eight-year-old male patient was sent to Willard Parker Hospital on August 12, 1929 and had been diagnosed with poliomyelitis. After an unrelated, and routine, tonsillectomy there was complete flaccid paralysis and loss of feeling in both the legs, right arm, and muscles in the trunk.
Spastic cerebral palsy is the type of cerebral palsy wherein spasticity is the exclusive impairment present. Itself an umbrella term encompassing spastic hemiplegia, spastic diplegia, spastic quadriplegia and — where solely one limb or one specific area of the body is affected— spastic monoplegia. Spastic cerebral palsy affects the cerebral cortex it is overwhelmingly the most common type of overall cerebral palsy.
The Society for Cerebral Palsy in Europe (SCPE) estimates that the spasticity-only cerebral palsy classification sweeps in 90% of global cerebral palsy cases. But even if the 90% assertion is an exaggeration, more conservative scientific estimates still place the prevalence of spasticity-dominant or spasticity-only cerebral palsy at anywhere from 70–80% of all cases, leaving cases dominated by ataxic cerebral palsy, dyskinetic cerebral palsy and athetoid cerebral palsy trailing at 20–30%.