Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
For infecting organisms to survive and repeat the infection cycle in other hosts, they (or their progeny) must leave an existing reservoir and cause infection elsewhere. Infection transmission can take place via many potential routes:
- Droplet contact, also known as the "respiratory route", and the resultant infection can be termed airborne disease. If an infected person coughs or sneezes on another person the microorganisms, suspended in warm, moist droplets, may enter the body through the nose, mouth or eye surfaces.
- Fecal-oral transmission, wherein foodstuffs or water become contaminated (by people not washing their hands before preparing food, or untreated sewage being released into a drinking water supply) and the people who eat and drink them become infected. Common fecal-oral transmitted pathogens include "Vibrio cholerae", "Giardia" species, rotaviruses, "Entameba histolytica", "Escherichia coli", and tape worms. Most of these pathogens cause gastroenteritis.
- Sexual transmission, with the resulting disease being called sexually transmitted disease
- Oral transmission, Diseases that are transmitted primarily by oral means may be caught through direct oral contact such as kissing, or by indirect contact such as by sharing a drinking glass or a cigarette.
- Transmission by direct contact, Some diseases that are transmissible by direct contact include athlete's foot, impetigo and warts
- Vehicle Transmission, transmission by an inanimate reservoir (food, water, soil).
- Vertical transmission, directly from the mother to an embryo, fetus or baby during pregnancy or childbirth. It can occur when the mother gets an infection as an intercurrent disease in pregnancy.
- Iatrogenic transmission, due to medical procedures such as injection or transplantation of infected material.
- Vector-borne transmission, transmitted by a vector, which is an organism that does not cause disease itself but that transmits infection by conveying pathogens from one host to another.
The relationship between "virulence versus transmissibility" is complex; if a disease is rapidly fatal, the host may die before the microbe can be passed along to another host.
There is a general chain of events that applies to infections. The chain of events involves several steps—which include the infectious agent, reservoir, entering a susceptible host, exit and transmission to new hosts. Each of the links must be present in a chronological order for an infection to develop. Understanding these steps helps health care workers target the infection and prevent it from occurring in the first place.
The U.S. Centers for Disease Control and Prevention (CDC) publishes a journal "Emerging Infectious Diseases" that identifies the following factors contributing to disease emergence:
- Microbial adaption; e.g. genetic drift and genetic shift in Influenza A
- Changing human susceptibility; e.g. mass immunocompromisation with HIV/AIDS
- Climate and weather; e.g. diseases with zoonotic vectors such as West Nile Disease (transmitted by mosquitoes) are moving further from the tropics as the climate warms
- Change in human demographics and trade; e.g. rapid travel enabled SARS to rapidly propagate around the globe
- Economic development; e.g. use of antibiotics to increase meat yield of farmed cows leads to antibiotic resistance
- Breakdown of public health; e.g. the current situation in Zimbabwe
- Poverty and social inequality; e.g. tuberculosis is primarily a problem in low-income areas
- War and famine
- Bioterrorism; e.g. 2001 Anthrax attacks
- Dam and irrigation system construction; e.g. malaria and other mosquito borne diseases
A list of the more common and well-known diseases associated with infectious pathogens is provided and is not intended to be a complete listing.
Other causes or associations of disease are: a compromised immune system, environmental toxins, radiation exposure, diet and lifestyle choices, stress, and genetics. Diseases may also be multifactorial, requiring multiple factors to induce disease. For example: in a murine model, Crohn's disease can be precipitated by a norovirus, but only when both a specific gene variant is present and a certain toxin has damaged the gut.
An emerging infectious disease (EID) is an infectious disease whose incidence has increased in the past 20 years and could increase in the near future. Emerging infections account for at least 12% of all human pathogens. EIDs are caused by newly identified species or strains (e.g. Severe acute respiratory syndrome, HIV/AIDS) that may have evolved from a known infection (e.g. influenza) or spread to a new population (e.g. West Nile fever) or to an area undergoing ecologic transformation (e.g. Lyme disease), or be "reemerging" infections, like drug resistant tuberculosis. Nosocomial (hospital-acquired) infections, such as methicillin-resistant Staphylococcus aureus are emerging in hospitals, and extremely problematic in that they are resistant to many antibiotics. Of growing concern are adverse synergistic interactions between emerging diseases and other infectious and non-infectious conditions leading to the development of novel syndemics. Many emerging diseases are zoonotic - an animal reservoir incubates the organism, with only occasional transmission into human populations.
Outbreaks of zoonoses have been traced to human interaction with and exposure to animals at fairs, petting zoos, and other settings. In 2005, the Centers for Disease Control and Prevention (CDC) issued an updated list of recommendations for preventing zoonosis transmission in public settings. The recommendations, developed in conjunction with the National Association of State Public Health Veterinarians, include educational responsibilities of venue operators, limiting public and animal contact, and animal care and management.
Contact with farm animals can lead to disease in farmers or others that come into contact with infected animals. Glanders primarily affects those who work closely with horses and donkeys. Close contact with cattle can lead to cutaneous anthrax infection, whereas inhalation anthrax infection is more common for workers in slaughterhouses, tanneries and wool mills. Close contact with sheep who have recently given birth can lead to clamydiosis, or enzootic abortion, in pregnant women, as well as an increased risk of Q fever, toxoplasmosis, and listeriosis in pregnant or the otherwise immunocompromised. Echinococcosis is caused by a tapeworm which can be spread from infected sheep by food or water contaminated with feces or wool. Bird flu is common in chickens. While rare in humans, the main public health worry is that a strain of bird flu will recombine with a human flu virus and cause a pandemic like the 1918 Spanish flu. In 2017, free range chickens in the UK were temporarily ordered to remain inside due to the threat of bird flu. Cattle are an important reservoir of cryptosporidiosis and mainly affects the immunocompromised.
Currently, no treatment is available.
Good husbandry measures, such as high water quality, low stocking density, and no mixing of batches, help to reduce disease incidence. To eradicate the disease, very strict protocol with regards to movement, water sources and stock replacement must be in place – and still it is difficult to achieve and comes at a high economic cost.
Infectious pancreatic necrosis (IPN) is a severe viral disease of salmonid fish. It is caused by infectious pancreatic necrosis virus, which is a member of the Birnaviridae family. This disease mainly affects young salmonids, such as trout or salmon, of less than six months, although adult fish may carry the virus without showing symptoms. Resistance to infection develops more rapidly in warmer water. It is highly contagious and found worldwide, but some regions have managed to eradicate or greatly reduce the incidence of disease. The disease is normally spread horizontally via infected water, but spread also occurs vertically. It is not a zoonosis.
Some ways to prevent airborne diseases include washing hands, using appropriate hand disinfection, getting regular immunizations against diseases believed to be locally present, wearing a respirator and limiting time spent in the presence of any patient likely to be a source of infection.
Exposure to a patient or animal with an airborne disease does not guarantee receiving the disease. Because of the changes in host immunity and how much the host was exposed to the particles in the air makes a difference to how the disease affects the body.
Antibiotics are not prescribed for patients to control viral infections. They may however be prescribed to a flu patient for instance, to control or prevent bacterial secondary infections. They also may be used in dealing with air-borne bacterial primary infections, such as pneumonic plague.
Additionally the Centers for Disease Control and Prevention (CDC) has told consumers about vaccination and following careful hygiene and sanitation protocols for airborne disease prevention. Consumers also have access to preventive measures like UV Air purification devices that FDA and EPA-certified laboratory test data has verified as effective in inactivating a broad array of airborne infectious diseases. Many public health specialists recommend social distancing to reduce the transmission of airborne infections.
Feline infectious anemia (FIA) is an infectious disease found in felines, causing anemia and other symptoms. The disease is caused by a variety of infectious agents, most commonly "Mycoplasma haemofelis" (which used to be called "Haemobartonella"). "Haemobartonella" and "Eperythrozoon" species were reclassified as mycoplasmas. Coinfection often occurs with other infectious agents, including: feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), "Ehrlichia" species, "Anaplasma phagocytophilum", and Candidatus "Mycoplasma haemominutum".
Some of the strategies for controlling tropical diseases include:
- Draining wetlands to reduce populations of insects and other vectors, or introducing natural predators of the vectors.
- The application of insecticides and/or insect repellents) to strategic surfaces such as clothing, skin, buildings, insect habitats, and bed nets.
- The use of a mosquito net over a bed (also known as a "bed net") to reduce nighttime transmission, since certain species of tropical mosquitoes feed mainly at night.
- Use of water wells, and/or water filtration, water filters, or water treatment with water tablets to produce drinking water free of parasites.
- Sanitation to prevent transmission through human waste.
- In situations where vectors (such as mosquitoes) have become more numerous as a result of human activity, a careful investigation can provide clues: for example, open dumps can contain stagnant water that encourage disease vectors to breed. Eliminating these dumps can address the problem. An education campaign can yield significant benefits at low cost.
- Development and use of vaccines to promote disease immunity.
- Pharmacologic pre-exposure prophylaxis (to prevent disease before exposure to the environment and/or vector).
- Pharmacologic post-exposure prophylaxis (to prevent disease after exposure to the environment and/or vector).
- Pharmacologic treatment (to treat disease after infection or infestation).
- Assisting with economic development in endemic regions. For example, by providing microloans to enable investments in more efficient and productive agriculture. This in turn can help subsistence farming to become more profitable, and these profits can be used by local populations for disease prevention and treatment, with the added benefit of reducing the poverty rate.
- Hospital for Tropical Diseases
- Tropical medicine
- Infectious disease
- Neglected diseases
- List of epidemics
- Waterborne diseases
- Globalization and disease
A contagious disease is a subset category of transmissible diseases, which are transmitted to other persons, either by physical contact with the person suffering the disease, or by casual contact with their secretions or objects touched by them or airborne route among other routes.
Non-contagious infections, by contrast, usually require a special mode of transmission between persons or hosts. These include need for intermediate vector species (mosquitoes that carry malaria) or by non-casual transfer of bodily fluid (such as transfusions, needle sharing or sexual contact).
The boundary between contagious and non-contagious infectious diseases is not perfectly drawn, as illustrated classically by tuberculosis, which is clearly transmissible from person to person, but was not classically considered a contagious disease. In the present day, most sexually transmitted diseases are considered contagious, but only some of them are subject to medical isolation.
Caseous lymphadenitis (CLA) is an infectious disease caused by the bacterium "Corynebacterium pseudotuberculosis" found mostly in goats and sheep that at present has no cure. It manifests itself predominantly in the form of large, pus-filled cysts on the neck, sides and udders of goats and sheep. The disease is spread mostly from an animal coming in contact with pus from a burst cyst on an infected animal, but the disease is highly contagious and is thought to also be spread by coughing or even by flies. Studies have found CL incidence in commercial goat herds as high as 30%.
Airborne transmission of disease depends on several physical variables endemic to the infectious particle. Environmental factors influence the efficacy of airborne disease transmission; the most evident environmental conditions are temperature and relative humidity. The sum of all the factors that influence temperature and humidity, either meteorological (outdoor) or human (indoor), as well as other circumstances influencing the spread of the droplets containing the infectious particles, as winds, or human behavior, sum up the factors influencing the transmission of airborne diseases.
- Climate and living area. Rainfall (number of rainy days being more important than total precipitation), mean of sunshine daily hours, latitude, altitude are characteristic agents to take in account when assessing the possibility of spread of any airborne infection. Furthermore, some infrequent or exceptional extreme events also influence the dissemination of airborne diseases, as tropical storms, hurricanes, typhoons, or monsoons. Climate conditions determine temperature, winds and relative humidity in any territory, either all year around or at isolated moments (days or weeks). Those are the main factors affecting the spread, duration and infectiousness of droplets containing infectious particles. For instance, influenza virus, is spread easily in northern countries (north hemisphere), because of climate conditions which favour the infectiousness of the virus but on the other hand, in those countries, lots of bacterial infections cannot spread outdoor most of the year, keeping in a latent stage.
- Socioeconomics and living conditions. They have a minor role in airborne diseases transmission, but they also have to be taken in consideration. Dwelling is an important aspect. In cities the spread of diseases is faster than in rural areas and outskirts. Normally, cities enclose quarters of buildings, in which the transmission of the viral and bacterial diseases among the neighborhoods is uncomplicated. However, suburban areas are generally more favourable for higher airborne fungal spores
Postweaning multisystemic wasting syndrome ("PMWS") is the classic PCVD entity, caused by PCV-2. PCV-2 has a near universal distribution – present in most pig herds. In contrast, PMWS is more sporadic in its distribution. Experimental induction of PMWS has not been achieved by PCV-2 infection alone, using infectious DNA clones of the virus or a pure form of PCV-2 derived from infectious DNA clones. Therefore, it is assumed that PMWS is a multifactorial disease. PCV-2 is necessary but not sufficient for the development of PMWS. However, viral infection by itself tends to cause only mild disease, and co-factors such as other infections or immunostimulation seem necessary for development of severe disease.[1] For example, concurrent infection with porcine parvovirus or PRRS virus, or immunostimulation lead to increased replication of PCV-2 and more severe disease in PCV-2-infected pigs. There is no significant correlation of the disease with virus sequence variation with affected and control pigs.
Most epidemics are caused by contagious diseases, with occasional exceptions, such as black plague. The spread of non-contagious communicable diseases, such as yellow fever or filariasis, is little or not affected by medical isolation (for ill persons) or medical quarantine (for exposed persons). Thus, a "contagious disease" is sometimes defined in practical terms, as a disease for which isolation or quarantine are useful public health responses.
Porcine circoviral disease (PCVD) and Porcine circovirus associated disease (PCVAD), is a disease seen in domestic pigs. This disease causes illness in piglets, with clinical signs including progressive loss of body condition, visibly enlarged lymph nodes, difficulty in breathing, and sometimes diarrhea, pale skin, and jaundice. PCVD is very damaging to the pig-producing industry and has been reported worldwide. PCVD is caused by porcine circovirus type 2 (PCV-2).
The North American industry endorses "PCVAD" and European use "PCVD" to describe this disease.
Ultraviolet (UV) radiation is implicated in cattle with no pigmentation around the eyelids and cattle with prominently placed eyes. Exudate from the sun-burnt skin around the eyes can contain bacteria and attracts flies. UV light also directly damages the corneal epithelium, leading to a breakdown in host innate immunity.
Dust, dried-up plants, tall vegetation, and oversized or incorrectly placed ear tags may cause mechanical damage to the eye and facilitate bacterial colonization.
The disease may be complicated by concurrent infection with viruses such as infectious bovine rhinotracheitis virus (bovine herpesvirus 1) or adenovirus, bacteria such as "Mycoplasma boviculi" or "Listeria monocytogenes", or infestation by "Thelazia", a nematode.
Vitamin A deficiency is also implicated.
IBK is most prevalent in summer and early autumn.
A recent Meat and Livestock Australia report "estimates that the disease costs Australian beef producers AU$23.5 million annually in lost production and treatment costs".
Additional neglected tropical diseases include:
Some tropical diseases are very rare, but may occur in sudden epidemics, such as the Ebola hemorrhagic fever, Lassa fever and the Marburg virus. There are hundreds of different tropical diseases which are less known or rarer, but that, nonetheless, have importance for public health.
Any age may be affected although it is most common in children aged five to fifteen years. By the time adulthood is reached about half the population will have become immune following infection at some time in their past. Outbreaks can arise especially in nursery schools, preschools, and elementary schools. Infection is an occupational risk for school and day-care personnel. There is no vaccine available for human parvovirus B19, though attempts have been made to develop one.
Flacherie (literally: "flaccidness") is a disease of silkworms, caused by silkworms eating infected or contaminated mulberry leaves. Flacherie infected silkworms look weak and can die from this disease. Silkworm larvae that are about to die from Flacherie are a dark brown.
There are two kinds of flacherie: essentially, infectious (viral) flacherie and noninfectious ("bouffee") flacherie. Both are technically a lethal diarrhea.
Bouffée flacherie is caused by heat waves ("bouffée" means "sudden heat spell" in French).
Viral flacherie is ultimately caused by infection with "Bombyx mori" infectious flacherie virus (BmIFV, Iflaviridae), "Bombyx mori" densovirus (BmDNV, Parvoviridae) or "Bombyx mori" cypovirus 1 (BmCPV-1, Reoviridae). This either alone or in combination with bacterial infection destroys the gut tissue. Bacterial pathogens contributing to infectious flaccherie are "Serratia marcescens", and species of "Streptococcus" and "Staphylococcus" in the form known as thatte roga.
Louis Pasteur, who began his studies on silkworm diseases in 1865, was the first one able to recognize that mortality due to viral flacherie was caused by infection. (Priority, however, was claimed by Antoine Béchamp.) Richard Gordon described the discovery: "The French silk industry was meanwhile plummeting from a 130 million to an 8 million francs annual income, because the silkworms had all caught "pébrine," black pepper disease…He [Pasteur] went south from Paris to Alais, and rewarded them by discovering the silkworm epidemic to be inflicted by some sort of living microbe…Pasteur threw in another disease, "flâcherie," silkworm diarrhoea. The cures for both were culling the insects which showed the peppery spots — the peasants bottled the silkworm moths in brandy, for display to the experts — and rigorous hygiene of the mulberry leaf."
"Moraxella bovis" is a Gram-negative rod-shaped aerobe. This bacterium is an obligate intracellular parasite of the mucous membranes, and can usually be isolated from the respiratory tract, vagina, and conjunctiva of healthy animals. Transmission of IBK is through direct contact with mucous membranes and their secretions and indirect contact where flies act as a mechanical vector. Asymptomatic carrier animals can also be source of infection.
Symptoms of infectious mononucleosis are fever, sore throat, and swollen lymph glands. Sometimes, a swollen spleen or liver involvement may develop. Heart problems or involvement of the central nervous system occurs only rarely, and infectious mononucleosis is almost never fatal. There are no known associations between active EBV infection and problems during pregnancy, such as miscarriages or birth defects. Although the symptoms of infectious mononucleosis usually resolve in 1 or 2 months, EBV remains dormant or latent in a few cells in the throat and blood for the rest of the person's life. Periodically, the virus can reactivate and is commonly found in the saliva of infected persons. Reactivated and post-latent virus may pass the placental barrier in (also seropositive) pregnant women via macrophages and therefore can infect the fetus. Also re-infection of prior seropositive individuals may occur. In contrast, reactivation in adults usually occurs without symptoms of illness.
EBV also establishes a lifelong dormant infection in some cells of the body's immune system. A late event in a very few carriers of this virus is the emergence of Burkitt's lymphoma and nasopharyngeal carcinoma, two rare cancers. EBV appears to play an important role in these malignancies, but is probably not the sole cause of disease.
Most individuals exposed to people with infectious mononucleosis have previously been infected with EBV and are not at risk for infectious mononucleosis. In addition, transmission of EBV requires intimate contact with the saliva (found in the mouth) of an infected person. Transmission of this virus through the air or blood does not normally occur. The incubation period, or the time from infection to appearance of symptoms, ranges from 4 to 6 weeks. Persons with infectious mononucleosis may be able to spread the infection to others for a period of weeks. However, no special precautions or isolation procedures are recommended, since the virus is also found frequently in the saliva of healthy people. In fact, many healthy people can carry and spread the virus intermittently for life. These people are usually the primary reservoir for person-to-person transmission. For this reason, transmission of the virus is almost impossible to prevent.
The clinical diagnosis of infectious mononucleosis is suggested on the basis of the symptoms of fever, sore throat, swollen lymph glands, and the age of the patient. Usually, laboratory tests are needed for confirmation. Serologic results for persons with infectious mononucleosis include an elevated white blood cell count, an increased percentage of certain atypical white blood cells, and a positive reaction to a "mono spot" test.