Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The disease is associated with high rates of mortality and severe morbidity.
It can be caused by a bacterial infection, such as bacterial meningitis, or may be a complication of a current infectious disease syphilis (secondary encephalitis).
Certain parasitic or protozoal infestations, such as toxoplasmosis, malaria, or primary amoebic meningoencephalitis, can also cause encephalitis in people with compromised immune systems. Lyme disease or "Bartonella henselae" may also cause encephalitis.
Other bacterial pathogens, like "Mycoplasma" and those causing rickettsial disease, cause inflammation of the meninges and consequently encephalitis. A non-infectious cause includes acute disseminated encephalitis which is demyelinated.
Identification of poor prognostic factors include thrombocytopenia, cerebral edema, status epilepticus, and thrombocytopenia. In contrast, a normal encephalogram at the early stages of diagnosis is associated with high rates of survival.
Herpesviral Encephalitis can be treated with high-dose intravenous acyclovir. Without treatment, HSE results in rapid death in approximately 70% of cases; survivors suffer severe neurological damage. When treated, HSE is still fatal in one-third of cases, and causes serious long-term neurological damage in over half of survivors. Twenty percent of treated patients recover with minor damage. Only a small population of survivors (2.5%) regain completely normal brain function. Indeed, many amnesic cases in the scientific literature have etiologies involving HSE. Earlier treatment (within 48 hours of symptom onset) improves the chances of a good recovery. Rarely, treated individuals can have relapse of infection weeks to months later. There is evidence that aberrant inflammation triggered by herpes simplex can result in granulomatous inflammation in the brain, which responds to steroids. While the herpes virus can be spread, encephalitis itself is not infectious. Other viruses can cause similar symptoms of encephalitis, though usually milder (Herpesvirus 6, varicella zoster virus, Epstein-Barr, cytomegalovirus, coxsackievirus, etc.).
Patients infected in solid organ transplants have developed a severe fatal illness, starting within weeks of the transplant. In all reported cases, the initial symptoms included fever, lethargy, anorexia and leukopenia, and quickly progressed to multisystem organ failure, hepatic insufficiency or severe hepatitis, dysfunction of the transplanted organ, coagulopathy, hypoxia, multiple bacteremias and shock. Localized rash and diarrhea were also seen in some patients. Nearly all cases have been fatal.
In May 2005, four solid-organ transplant recipients contracted an illness that was later diagnosed as lymphocytic choriomeningitis. All received organs from a common donor, and within a month of transplantation, three of the four recipients had died as a result of the viral infection. Epidemiologic investigation traced the source to a pet hamster that the organ donor had recently purchased from a Rhode Island pet store. Similar cases occurred in Massachusetts in 2008, and Australia in 2013. Currently, there is not a LCMV infection test that is approved by the Food and Drug Administration for organ donor screening. The "Morbidity and Mortality Weekly Report" advises health-care providers to "consider LCMV infection in patients with aseptic meningitis and encephalitis and in organ transplant recipients with unexplained fever, hepatitis, or multisystem organ failure."
The most common causes of viral meningitis in the United States are non-polio enteroviruses. The viruses that cause meningitis are typically acquired from sick contacts. However, in most cases, people infected with viruses that may cause meningitis do not actually develop meningitis.
Viruses that can cause meningitis include:
Meningitis is a very common in children. Newborns can develop herpes virus infections through contact with infected secretions in the birth canal. Other viral infections are acquired by breathing air contaminated with virus-containing droplets exhaled by an infected person. Arbovirus infections are acquired from bites by infected insects (called epidemic encephalitis). Viral central nervous system infections in newborns and infants usually begin with fever. The inability of infants to communicate directly makes it difficult to understand their symptoms. Newborns may have no other symptoms and may initially not otherwise appear ill. Infants older than a month or so typically become irritable and fussy and refuse to eat. Vomiting is common. Sometimes the soft spot on top of a newborn's head (fontanelle) bulges, indicating an increase in pressure on the brain. Because irritation of the meninges is worsened by movement, an infant with meningitis may cry more, rather than calm down, when picked up and rocked. Some infants develop a strange, high-pitched cry. Infants with encephalitis often have seizures or other abnormal movements. Infants with severe encephalitis may become lethargic and comatose and then die. To make the diagnosis of meningitis or the diagnosis of encephalitis, doctors do a spinal tap (lumbar puncture) to obtain cerebrospinal fluid (CSF) for laboratory analysis in children.
Viral encephalitis is a type of encephalitis caused by a virus.
It is unclear if anticonvulsants used in people with viral encephalitis would prevent seizures.
It has been proposed that viral meningitis might lead to inflammatory injury of the vertebral artery wall.
The Meningitis Research Foundation is conducting a study to see if new genomic techniques can the speed, accuracy and cost of diagnosing meningitis in children in the UK. The research team will develop a new method to be used for the diagnosis of meningitis, analysing the genetic material of microorganisms found in CSF (cerebrospinal fluid). The new method will first be developed using CSF samples where the microorganism is known, but then will be applied to CSF samples where the microorganism is unknown (estimated at around 40%) to try and identify a cause.
Arbovirus encephalitis refers to encephalitis that is caused by arbovirus infection.
There are many types of arboviral encephalitides found in the United States.
Examples include:
- California encephalitis
- Japanese encephalitis
- St. Louis encephalitis
- Tick-borne encephalitis
- West Nile fever
- Murray Valley encephalitis
Lymphocytic choriomeningitis is not a commonly reported infection in humans, though most infections are mild and are often never diagnosed. Serological surveys suggest that approximately 1–5% of the population in the U.S. and Europe has antibodies to LCMV. The prevalence varies with the living conditions and exposure to mice, and it has been higher in the past due to lower standards of living. The island of Vir in Croatia is one of the biggest described endemic places of origin of LCMV in the world, with IFA testing having found LCMV antibodies in 36% of the population. Individuals with the highest risk of infection are laboratory personnel who handle rodents or infected cells. Temperature and time of year is also a critical factor that contributes to the number of LCMV infections, particularly during fall and winter when mice tend to move indoors. Approximately 10–20% of the cases in immunocompetent individuals are thought to progress to neurological disease, mainly as aseptic meningitis. The overall case fatality rate is less than 1% and people with complications, including meningitis, almost always recover completely. Rare cases of meningoencephalitis have also been reported. More severe disease is likely to occur in people who are immunosuppressed.
More than 50 infants with congenital LCMV infection have been reported worldwide. The probability that a woman will become infected after being exposed to rodents, the frequency with which LCMV crosses the placenta, and the likelihood of clinical signs among these infants are still poorly understood. In one study, antibodies to LCMV were detected in 0.8% of normal infants, 2.7% of infants with neurological signs and 30% of infants with hydrocephalus. In Argentina, no congenital LCMV infections were reported among 288 healthy mothers and their infants. However, one study found that two of 95 children in a home for people with severe mental disabilities had been infected with this virus. The prognosis for severely affected infants appears to be poor. In one series, 35% of infants diagnosed with congenital infections had died by the age of 21 months.
Transplant-acquired lymphocytic choriomeningitis proves to have a very high morbidity and mortality rate. In the three clusters reported in the U.S. from 2005 to 2010, nine of the ten infected recipients died. One donor had been infected from a recently acquired pet hamster while the sources of the virus in the other cases were unknown.
It is transmitted by the bite of several species of infected ticks, including "Ixodes scapularis", "I. ricinus" and "I. persulcatus", or (rarely) through the non-pasteurized milk of infected cows.
Herpesviral encephalitis is encephalitis due to herpes simplex virus.
Herpes simplex encephalitis (HSE) is a viral infection of the human central nervous system. It is estimated to affect at least 1 in 500,000 individuals per year and some studies suggest an incidence rate of 5.9 cases per 100,000 live births. The majority of cases of herpes encephalitis are caused by herpes simplex virus-1 (HSV-1), the same virus that causes cold sores. 57% of American adults are infected with HSV-1, which is spread through droplets, casual contact, and sometimes sexual contact, though most infected people never have cold sores. About 10% of cases of herpes encephalitis are due to HSV-2, which is typically spread through sexual contact. About 1 in 3 cases of HSE result from primary HSV-1 infection, predominantly occurring in individuals under the age of 18; 2 in 3 cases occur in seropositive persons, few of whom have history of recurrent orofacial herpes. Approximately 50% of individuals who develop HSE are over 50 years of age.
The La Crosse encephalitis virus is a type of arbovirus called a bunyavirus. The Bunyavirales are mainly arboviruses.
Most cases of LAC encephalitis occur in children under 16 years of age. LAC virus is a zoonotic pathogen cycled between the daytime-biting treehole mosquito, "Aedes triseriatus", and vertebrate amplifier hosts (chipmunks, tree squirrels) in deciduous forest habitats. The virus is maintained over the winter by transovarial transmission in mosquito eggs. If the female mosquito is infected, she may lay eggs that carry the virus, and the adults coming from those eggs may be able to transmit the virus to chipmunks and to humans.
Anyone bitten by a mosquito in an area where the virus is circulating can get infected with LACV. The risk is highest for people who live, work or recreate in woodland habitats, because of greater exposure to potentially infected mosquitoes.
Many viral infections of the central nervous system occur in seasonal peaks or as epidemics, whereas others, such as herpes simplex encephalitis, are sporadic. In endemic areas it is mostly a disease of children, but as the disease spreads to new regions, or nonimmune travelers visit endemic regions, nonimmune adults are also affected.
TBE is caused by tick-borne encephalitis virus, a member of the genus "Flavivirus" in the family Flaviviridae. It was first isolated in 1937. Three virus sub-types are described: European or Western tick-borne encephalitis virus, Siberian tick-borne encephalitis virus, and Far-Eastern tick-borne encephalitis virus (formerly known as Russian spring summer encephalitis virus).
Russia and Europe report about 5,000–7,000 human cases annually.
The former Soviet Union conducted research on tick borne diseases, including the TBE viruses.
People reduce the chance of getting infected with LACV by preventing mosquito bites. There is no vaccine or preventive drug.
Prevention measures against LACV include reducing exposure to mosquito bites. Use repellent such as DEET and picaridin, while spending time outside, especially at during the daytime - from dawn until dusk. "Aedes triseriatus" mosquitoes that transmit (LACV) are most active during the day. Wear long sleeves, pants and socks while outdoors. Ensure all screens are in good condition to prevent mosquitoes from entering your home. "Aedes triseriatus" prefer treeholes to lay eggs in. Also, remove stagnant water such as old tires, birdbaths, flower pots, and barrels.
Infection with Japanese encephalitis confers lifelong immunity. There are currently three vaccines available: SA14-14-2, IC51 (marketed in Australia and New Zealand as JESPECT and elsewhere as IXIARO) and ChimeriVax-JE (marketed as IMOJEV). All current vaccines are based on the genotype III virus.
A formalin-inactivated mouse-brain derived vaccine was first produced in Japan in the 1930s and was validated for use in Taiwan in the 1960s and in Thailand in the 1980s. The widespread use of vaccine and urbanization has led to control of the disease in Japan, Korea, Taiwan, and Singapore. The high cost of this vaccine, which is grown in live mice, means that poorer countries have not been able to afford to give it as part of a routine immunization program.
The most common adverse effects are redness and pain at the injection site. Uncommonly, an urticarial reaction can develop about four days after injection. Vaccines produced from mouse brain have a risk of autoimmune neurological complications of around 1 per million vaccinations. However where the vaccine is not produced in mouse brains but in vitro using cell culture there is little adverse effects compared to placebo, the main side effects are headache and myalgia.
The neutralizing antibody persists in the circulation for at least two to three years, and perhaps longer. The total duration of protection is unknown, but because there is no firm evidence for protection beyond three years, boosters are recommended every three years for people who remain at risk. Furthermore, there is also no data available regarding the interchangeability of other JE vaccines and IXIARO.
In September 2012 the Indian firm Biological E. Limited has launched an inactivated cell culture derived vaccine based on SA 14-14-2 strain which was developed in a technology transfer agreement with Intercell and is a thiomersal-free vaccine.
Limbic encephalitis is associated with an autoimmune reaction. In non-paraneoplastic limbic enephalitis, this is typically due to infection (commonly herpes simplex virus) or as a systemic autoimmune disorder. Limbic encephalitis associated with cancer or tumors is called paraneoplastic limbic encephalitis.
Types of encephalitis in humans include:
- Arbovirus encephalitis
- La Crosse encephalitis
- Enterovirus
- California encephalitis virus
- Japanese encephalitis
- St. Louis encephalitis
- Eastern equine encephalitis virus
- Western equine encephalitis virus
- Venezuelan equine encephalitis virus
- Murray Valley encephalitis virus
- Tick-borne meningoencephalitis
- Powassan encephalitis
- West Nile virus
- Herpes simplex
- Human herpesvirus 6
- Varicella zoster virus
- Rabies
- HIV
- H5N1 encephalitis
- Nipah virus encephalitis
- Lymphocytic choriomeningitis, which also causes encephalitis
Meningoencephalitis (; from Greek μῆνιγξ "meninx", "membrane", ἐγκέφαλος, "enképhalos" "brain", and the medical suffix "-itis", "inflammation") is a medical condition that simultaneously resembles both meningitis, which is an infection or inflammation of the meninges, and encephalitis, which is an infection or inflammation of the brain.
There is no specific treatment for Japanese encephalitis and treatment is supportive, with assistance given for feeding, breathing or seizure control as required. Raised intracranial pressure may be managed with mannitol. There is no transmission from person to person and therefore patients do not need to be isolated.
A breakthrough in the field of Japanese encephalitis therapeutics is the identification of macrophage receptor involvement in the disease severity. A recent report of an Indian group demonstrates the involvement of monocyte and macrophage receptor CLEC5A in severe inflammatory response in Japanese Encephalitis infection of the brain. This transcriptomic study provides a hypothesis of neuroinflammation and a new lead in development of appropriate therapeutic against Japanese encephalitis.
Mosquitoes, primarily from the genus "Culex", become infected by feeding on birds infected with the Saint Louis encephalitis virus. Infected mosquitoes then transmit the Saint Louis encephalitis virus to humans and animals during the feeding process. The Saint Louis encephalitis virus grows both in the infected mosquito and the infected bird, but does not make either one sick. Only infected mosquitoes can transmit Saint Louis encephalitis virus. Once a human has been infected with the virus it is not transmissible from that individual to other humans.
There is currently no established treatment.
Half of all cases results in permanent neurological damage and 10-15% result in death.
Limbic encephalitis is broadly grouped into two types: paraneoplastic limbic encephalitis and non-paraneoplastic limbic encephalitis.
- Paraneoplastic limbic encephalitis (PNLE) is caused by cancer or tumor, and may be treated by removal of the tumor.
- Non-paraneoplastic limbic encephalitis (NPLE) is not associated with cancer. More common than PNLE, it is caused by am infection, autoimmune disorder, or other condition that may never be identified.