Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This condition is linked to the X chromosome.
- Siberian Husky - Night blindness by two to four years old.
- Samoyed - More severe disease than the Husky.
This type of PRA has an early onset of severe vision loss. It is caused by a defect in the gene for cGMP-phosphodiesterase, which leads to retinal levels of cyclic guanosine monophosphate ten times normal.
Most affected cats are over 10 years old. No breed or sex is predisposed to hyperadlosteronism.
Primary hyperaldosteronism (PHA) is a disorder of the adrenal cortex that causes increased circulating aldosterone levels. There are two types of PHA. One type is caused by a unilateral aldosterone-producing adenoma or adenocarcinoma. The other type, known as idiopathic hyperaldosteronism, occurs with bilateral adrenal hyperplasia.
RA has been found among alcohol-dependent patients who suffer from Korsakoff's syndrome. Korsakoff's syndrome patients suffer from retrograde amnesia due to a thiamine deficiency (lack of vitamin B1). Also, chronic alcohol use disorders are associated with a decrease in volume of the left and right hippocampus.
These patients' regular diet consists mostly of hard alcohol intake, which lacks the necessary nutrients for healthy development and maintenance. Therefore, after a prolonged time consuming primarily alcohol, these people undergo memory difficulties and ultimately suffer from RA. However, some of the drawback of using Korsakoff patients to study RA is the progressive nature of the illness and the unknown time of onset.
Traumatic brain injury (TBI), also known as post-traumatic amnesia, occurs from an external force that causes structural damage to the brain, such as a sharp blow to the head, a diffuse axonal injury, or childhood brain damage (e.g., shaken baby syndrome). In cases of sudden rapid acceleration, the brain continues moving around in the skull, harming brain tissue as it hits internal protrusions.
TBI varies according to impact of external forces, location of structural damage, and severity of damage ranging from mild to severe. Retrograde amnesia can be one of the many consequences of brain injury but it is important to note that it is not always the outcome of TBI. An example of a subgroup of people who are often exposed to TBI are individuals who are involved in high-contact sports. Research on football players takes a closer look at some of the implications to their high-contact activities. Enduring consistent head injuries can have an effect on the neural consolidation of memory.
Specific cases, such as that of patient ML, support the evidence that severe blows to the head can cause the onset of RA. In this specific case there was an onset of isolated RA following a severe head injury. The brain damage did not affect the person's ability to form new memories. Therefore, the idea that specific sections of retrograde memory are independent of anterograde is supported. Normally, there is a very gradual recovery, however, a dense period of amnesia immediately preceding the trauma usually persists.