Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The importance of correctly recognizing progressive muscular atrophy as opposed to ALS is important for several reasons.
- 1) the prognosis is a little better. A recent study found the 5-year survival rate in PMA to be 33% (vs 20% in ALS) and the 10-year survival rate to be 12% (vs 6% in ALS).
- 2) Patients with PMA do not suffer from the cognitive change identified in certain groups of patients with MND.
- 3) Because PMA patients do not have UMN signs, they usually do not meet the "World Federation of Neurology El Escorial Research Criteria" for “Definite” or “Probable” ALS and so are ineligible to participate in the majority of clinical research trials such as drugs trials or brain scans.
- 4) Because of its rarity (even compared to ALS) and confusion about the condition, some insurance policies or local healthcare policies may not recognize PMA as being the life-changing illness that it is. In cases where being classified as being PMA rather than ALS is likely to restrict access to services, it may be preferable to be diagnosed as "slowly progressive ALS" or "lower motor neuron predominant" ALS.
An initial diagnosis of PMA could turn out to be slowly progressive ALS many years later, sometimes even decades after the initial diagnosis. The occurrence of upper motor neurone symptoms such as brisk reflexes, spasticity, or a Babinski sign would indicate a progression to ALS; the correct diagnosis is also occasionally made on autopsy.
Despite being rarer than ALS, PMA was described earlier, when in 1850 French neurologist François Aran () described 11 cases which he termed "atrophie musculaire progressive". Contemporary neurologist Guillaume-Benjamin-Amand Duchenne de Boulogne also claimed to have described the condition 1 year earlier, although the written report was never found. The condition has been called progressive muscular atrophy (PMA), spinal muscular atrophy (SMA), Aran–Duchenne disease, Duchenne–Aran disease, Aran–Duchenne muscular atrophy, and Duchenne–Aran muscular atrophy. The name "spinal muscular atrophy" is ambiguous as it refers to any of various spinal muscular atrophies, including the autosomal recessive spinal muscular atrophy caused by a genetic defect in the "SMN1" gene.
In the United States, the term is often used to denote ALS, the most common disorder in the group. In the United Kingdom, the term is also spelled "motor neurone disease" (MND) and is sometimes used for the entire group; but mostly it refers to ALS.
While MND refers to a specific subset of similar diseases, there are numerous other diseases of motor neurons that are referred to collectively as "motor neuron disorders", for instance disease belonging to spinal muscular atrophies. However, they are not classified as "motor neuron diseases" by the tenth International Statistical Classification of Diseases and Related Health Problems (ICD-10), which is the definition followed in this article.
A motor neuron disease (MND) is any of several neurological disorders that selectively affect motor neurons, the cells that control voluntary muscles of the body. They include amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP), primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), progressive bulbar palsy (PBP) and pseudobulbar palsy. Spinal muscular atrophies (SMA) are sometimes included in the group by some neurologists but it is different disease with clear genetic cause. They are neurodegenerative in nature and cause increasing disability and eventually, death.
The cause is unclear. The underlying mechanism is believed to involve excessive excitability of neurons within the cortex of the brain.
Specifically the right lingual gyrus and left cerebellar anterior lobe of the brain.
Persisting visual snow can feature as a leading addition to a migraine complication called persistent aura without infarction, commonly referred to as persistent migraine aura (PMA). In other clinical sub-forms of migraine headache may be absent and the migraine aura may not take the typical form of the zigzagged fortification spectrum, but manifests with a large variety of focal neurological symptoms.
The role of hallucinogens in of visual snow is not clear. Hallucinogen persisting perception disorder (HPPD), a condition caused by hallucinogenic drug use, is sometimes linked to visual snow, but both the connection of visual snow to HPPD and the cause and prevalence of HPPD is disputed. Most of the evidence for both is generally anecdotal, and subject to spotlight fallacy.
Visual snow, also known as visual static, is a proposed condition in which people see white or black dots in parts or the whole of their visual fields. The problem is typically always present and can last years. The severity of the "snow" differs; and it has been suggested that in some the condition may affect daily life, making it difficult to read, drive, or see in detail. The use of computer screens can exacerbate symptoms.
The cause is unclear. Typically it occurs in people with migraines. The underlying mechanism is believed to involve excessive excitability of neurons within the cortex of the brain. It is commonly confused with floaters, leading to misdiagnosis as well as underdiagnosis.
Medications that may be used include lamotrigine, acetazolamide, or verapamil. But these do not always result in benefits.