Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
About 15–20% of hospitalized Lassa fever patients will die from the illness. The overall mortality rate is estimated to be 1%, but during epidemics, mortality can climb as high as 50%. The mortality rate is greater than 80% when it occurs in pregnant women during their third trimester; fetal death also occurs in nearly all those cases. Abortion decreases the risk of death to the mother. Some survivors experience lasting effects of the disease, and can include partial or complete deafness.
Because of treatment with ribavirin, fatality rates are continuing to decline.
Prevention strategies include reducing the breeding of midges through source reduction (removal and modification of breeding sites) and reducing contact between midges and people. This can be accomplished by reducing the number of natural and artificial water-filled habitats and encourage the midge larvae to grow.
Oropouche fever is present in epidemics so the chances of one contracting it after being exposed to areas of midgets or mosquitoes is rare.
The study of RRF has been recently facilitated by the development of a mouse model. Mice infected with RRV develop hind-limb arthritis/arthralgia which is similar to human disease. The disease in mice is characterized by an inflammatory infiltrate including macrophages which are immunopathogenic and exacerbate disease. Furthermore, mice deficient in the C3 protein do not suffer from severe disease following infection. This indicates that an aberrant innate immune response is responsible for severe disease following RRV infection.
One study has focused on identifying OROV through the use of RNA extraction from reverse transcription-polymerase chain reaction. This study revealed that OROV caused central nervous system infections in three patients. The three patients all had meningoencephalitis and also showed signs of clear lympho-monocytic cellular pattern in CSF, high protein, and normal to slightly decreased glucose levels indicating they had viral infections. Two of the patients already had underlying infections that can effect the CNS and immune system and in particular one of these patients has HIV/AIDS and the third patient has neurocysticercosis. Two patients were infected with OROV developed meningitis and it was theorized that this is due to them being immunocompromised. Through this it was revealed that it's possible that the invasion of the central nervous system by the oropouche virus can be performed by a pervious blood-brain barrier damage.
Lassa virus is a member of the Arenavirida family of viruses. Specifically it is an old world arenavirus, which is enveloped, single-stranded, and bi-segmented RNA. This virus has a both a large and a small genome section, with four lineages identified to date: Josiah (Sierra Leone), GA391 (Nigeria), LP (Nigeria) and strain AV.
Investigational vaccines exist for Argentine hemorrhagic fever and RVF; however, neither is approved by FDA or commonly available in the United States.
The structure of the attachment glycoprotein has been determined by X-ray crystallography and this glycoprotein is likely to be an essential component of any successful vaccine.
Preventing Omsk Hemorrhagic Fever consists primarily in avoiding being exposed to tick. Persons engaged in camping, farming, forestry, hunting (especially the Siberian muskrat) are at greater risk and should wear protective clothing or use insect repellent for protection. The same is generally recommended for persons at sheltered locations.
Severe disease is more common in babies and young children, and in contrast to many other infections, it is more common in children who are relatively well nourished. Other risk factors for severe disease include female sex, high body mass index, and viral load. While each serotype can cause the full spectrum of disease, virus strain is a risk factor. Infection with one serotype is thought to produce lifelong immunity to that type, but only short-term protection against the other three. The risk of severe disease from secondary infection increases if someone previously exposed to serotype DENV-1 contracts serotype DENV-2 or DENV-3, or if someone previously exposed to DENV-3 acquires DENV-2. Dengue can be life-threatening in people with chronic diseases such as diabetes and asthma.
Polymorphisms (normal variations) in particular genes have been linked with an increased risk of severe dengue complications. Examples include the genes coding for the proteins known as TNFα, mannan-binding lectin, CTLA4, TGFβ, DC-SIGN, PLCE1, and particular forms of human leukocyte antigen from gene variations of HLA-B. A common genetic abnormality, especially in Africans, known as glucose-6-phosphate dehydrogenase deficiency, appears to increase the risk. Polymorphisms in the genes for the vitamin D receptor and FcγR seem to offer protection against severe disease in secondary dengue infection.
There is currently no vaccine available. The primary method of disease prevention is minimizing mosquito bites, as the disease is only transmitted by mosquitoes. Typical advice includes use of mosquito repellent and mosquito screens, wearing light coloured clothing, and minimising standing water around homes (e.g. removing Bromeliads, plant pots, garden ponds). Staying indoors during dusk/dawn hours when mosquitos are most active may also be effective. Bush camping is a common precipitant of infection so particular care is required.
Measures to reduce contact between the vesper mouse and humans may have contributed to limiting the number of outbreaks, with no cases identified between 1973 and 1994. Although there are no cures or vaccine for the disease, a vaccine developed for the genetically related Junín virus which causes Argentine hemorrhagic fever has shown evidence of cross-reactivity to Machupo virus, and may therefore be an effective prophylactic measure for people at high risk of infection. Post infection (and providing that the person survives the infection), those that have contracted BHF are usually immune to further infection of the disease.
Treatment is similar to hepatitis B, but due to its high lethality, more aggressive therapeutic approaches are recommended in the acute phase. In absence of a specific vaccine against delta virus, the vaccine against HBV must be given soon after birth in risk groups.
Omsk hemorrhagic fever is caused by the Omsk hemorrhagic fever virus (OHFV), a member of the Flavivirus family. The virus was discovered by Mikhail Chumakov and his colleagues between 1945 and 1947 in Omsk, Russia. The infection is found in western Siberia, in places including Omsk, Novosibirsk, Kurgan, and Tyumen. The virus survives in water and is transferred to humans via contaminated water or an infected tick.
Five families of RNA viruses have been recognised as being able to cause hemorrhagic fevers.
- The family "Arenaviridae" include the viruses responsible for Lassa fever (Lassa virus), Lujo virus, Argentine (Junin virus), Bolivian (Machupo virus), Brazilian (Sabiá virus), Chapare hemorrhagic fever (Chapare virus) and Venezuelan (Guanarito virus) hemorrhagic fevers.
- The family "Bunyaviridae" include the members of the "Hantavirus" genus that cause hemorrhagic fever with renal syndrome (HFRS), the Crimean-Congo hemorrhagic fever (CCHF) virus from the "Nairovirus" genus, Garissa virus and Ilesha virus from the "Orthobunyavirus" and the Rift Valley fever (RVF) virus from the "Phlebovirus" genus.
- The family "Filoviridae" include Ebola virus and Marburg virus.
- The family "Flaviviridae" include dengue, yellow fever, and two viruses in the tick-borne encephalitis group that cause VHF: Omsk hemorrhagic fever virus and Kyasanur Forest disease virus.
- In September 2012 scientists writing in the journal PLOS Pathogens reported the isolation of a member of the "Rhabdoviridae" responsible for 2 fatal and 2 non-fatal cases of hemorrhagic fever in the Bas-Congo district of the Democratic Republic of Congo. The non-fatal cases occurred in healthcare workers involved in the treatment of the other two, suggesting the possibility of person-to-person transmission. This virus appears to be unrelated to previously known Rhabdoviruses.
The pathogen that caused the cocoliztli epidemics in Mexico of 1545 and 1576 is still unknown.
The VHF viruses are spread in a variety of ways. Some may be transmitted to humans through a respiratory route. According to Soviet defector Ken Alibek, Soviet scientists concluded China may have tried to weaponise a VHF virus during the late 1980's but discontinued to do so after an outbreak . The virus is considered by military medical planners to have a potential for aerosol dissemination, weaponizaton, or likelihood for confusion with similar agents that might be weaponized.
Mosquito-borne diseases, such as dengue fever and malaria, typically affect third world countries and areas with tropical climates. Mosquito vectors are sensitive to climate changes and tend to follow seasonal patterns. Between years there are often dramatic shifts in incidence rates. The occurrence of this phenomenon in endemic areas makes mosquito-borne viruses difficult to treat.
Dengue fever is caused by infection through viruses of the family Flaviviridae. The illness is most commonly transmitted by Aedes aegypti mosquitoes in tropical and subtropical regions. Dengue virus has four different serotypes, each of which are antigenically related but have limited cross-immunity to reinfection.
Although dengue fever has a global incidence of 50-100 million cases, only several hundreds of thousands of these cases are life-threatening. The geographic prevalence of the disease can be examined by the spread of the Aedes aegypti. Over the last twenty years, there has been a geographic spread of the disease. Dengue incidence rates have risen sharply within urban areas which have recently become endemic hot spots for the disease. The recent spread of Dengue can also be attributed to rapid population growth, increased coagulation in urban areas, and global travel. Without sufficient vector control, the dengue virus has evolved rapidly over time, posing challenges to both government and public health officials.
Malaria is caused by a protozoan called Plasmodium falciparum. P. falciparum parasites are transmitted mainly by the Anopheles gambiae complex in rural Africa. In just this area, P. falciparum infections comprise an estimated 200 million clinical cases and 1 million annual deaths. 75% of individuals afflicted in this region are children. As with dengue, changing environmental conditions have led to novel disease characteristics. Due to increased illness severity, treatment complications, and mortality rates, many public health officials concede that malaria patterns are rapidly transforming in Africa. Scarcity of health services, rising instances of drug resistance, and changing vector migration patterns are factors that public health officials believe contribute to malaria’s dissemination.
Climate heavily affects mosquito vectors of malaria and dengue. Climate patterns influence the lifespan of mosquitos as well as the rate and frequency of reproduction. Climate change impacts have been of great interest to those studying these diseases and their vectors. Additionally, climate impacts mosquito blood feeding patterns as well as extrinsic incubation periods. Climate consistency gives researchers an ability to accurately predict annual cycling of the disease but recent climate unpredictability has eroded researchers’ ability to track the disease with such precision.
Prophylaxis by vaccination, as well as preventive measures like protective clothing, tick control, and mosquito control are advised. The vaccine for KFDV consists of formalin-inactivated KFDV. The vaccine has a 62.4% effectiveness rate for individuals who receive two doses. For individuals who receive an additional dose, the effectiveness increases to 82.9%. Specific treatments are not available.
There is a re-emergence of mosquito vector viruses (arthropod-borne viruses) called arboviruses carried by the "Aedes aegypti" mosquito. Examples are the Zika virus, chikungunya virus, yellow fever and dengue fever. The re-emergence of the viruses has been at a faster rate, and over a wider geographic area, than in the past. The rapid re-emergence is due to expanding global transportation networks, the mosquito's increasing ability to adapt to urban settings, the disruption of traditional land use and the inability to control expanding mosquito populations. Like malaria, other arboviruses do not have a vaccine. The only exception is yellow fever. Prevention is focused on reducing the adult mosquito populations, controlling mosquito larvae and protecting individuals from mosquito bites. Depending on the mosquito vector, and the affected community, a variety of prevention methods may be deployed at one time.
The disease has a fatality rate of 3-10%, and it affects 400-500 people annually.
Most people with dengue recover without any ongoing problems. The fatality rate is 1–5%, and less than 1% with adequate treatment; however those who develop significantly low blood pressure may have a fatality rate of up to 26%. Dengue is common in more than 110 countries. In 2013 it causes about 60 million symptomatic infections worldwide, with 18% admitted to hospital and about 13,600 deaths. The worldwide cost of dengue case is estimated US$9 billion. For the decade of the 2000s, 12 countries in Southeast Asia were estimated to have about 3 million infections and 6,000 deaths annually. It is reported in at least 22 countries in Africa; but is likely present in all of them with 20% of the population at risk. This makes it one of the most common vector-borne diseases worldwide.
Infections are most commonly acquired in the urban environment. In recent decades, the expansion of villages, towns and cities in the areas in which it is common, and the increased mobility of people has increased the number of epidemics and circulating viruses. Dengue fever, which was once confined to Southeast Asia, has now spread to Southern China, countries in the Pacific Ocean and America, and might pose a threat to Europe.
Rates of dengue increased 30 fold between 1960 and 2010. This increase is believed to be due to a combination of urbanization, population growth, increased international travel, and global warming. The geographical distribution is around the equator. Of the 2.5 billion people living in areas where it is common 70% are from Asia and the Pacific. An infection with dengue is second only to malaria as a diagnosed cause of fever among travelers returning from the developing world. It is the most common viral disease transmitted by arthropods, and has a disease burden estimated at 1,600 disability-adjusted life years per million population. The World Health Organization counts dengue as one of seventeen neglected tropical diseases.
Like most arboviruses, dengue virus is maintained in nature in cycles that involve preferred blood-sucking vectors and vertebrate hosts. The viruses are maintained in the forests of Southeast Asia and Africa by transmission from female "Aedes" mosquitoes—of species other than "A. aegypti"—to their offspring and to lower primates. In towns and cities, the virus is primarily transmitted by the highly domesticated "A. aegypti". In rural settings the virus is transmitted to humans by "A. aegypti" and other species of "Aedes" such as "A. albopictus". Both these species had expanding ranges in the second half of the 20th century. In all settings the infected lower primates or humans greatly increase the number of circulating dengue viruses, in a process called amplification.
Lábrea fever is a coinfection or superinfection of hepatitis D or delta virus and hepatitis B (HBV). The infection by delta virus may occur in a patient who already has the HBV, or both viruses may infect at the same time a previously uninfected patient. Delta virus can only multiply in the presence of HBV, therefore vaccination against HBV prevents infection. Thus, American and Brazilian scientists have determined that the delta virusa, virus, which is a small circular RNA virus, is normally unable to cause illness by itself, due to a defect. When it is combined with HBV, Lábrea hepatitis may ensue. The main discovery of delta virus and HBV association was done by Dr. Gilberta Bensabath, a leading tropical virologist of the Instituto Evandro Chagas, of Belém, state of Pará, and her collaborators.
Infected patients show extensive destruction of liver tissue, with steatosis of a particular type (microsteatosis, characterized by small fat droplets inside the cells), and infiltration of large numbers of inflammatory cells called "morula cells", comprised mainly by macrophages containing delta virus antigens.
In the 1987 Boca do Acre study, scientists did an epidemiological survey and reported delta virus infection in 24% of asymptomatic HBV carriers, 29% of acute nonfulminant hepatitis B cases, 74% of fulminant hepatitis B cases, and 100% of chronic hepatitis B cases. The delta virus seems to be endemic in the Amazon region.
To avoid tick bites and infection, experts advise:
- Avoid tick-infested areas, especially during the warmer months.
- Wear light-colored clothing so ticks can be easily seen. Wear a long sleeved shirt, hat, long pants, and tuck pant legs into socks.
- Walk in the center of trails to avoid overhanging grass and brush.
- Clothing and body parts should be checked every few hours for ticks when spending time outdoors in tick-infested areas. Ticks are most often found on the thigh, arms, underarms, and legs. Ticks can be very small (no bigger than a pinhead). Look carefully for new "freckles".
- The use of insect repellents containing DEET on skin or permethrin on clothing can be effective. Follow the directions on the container and wash off repellents when going indoors.
- Remove attached ticks immediately.
Contracting the CTF virus is thought to provide long-lasting immunity against reinfection. However, it is always wise to be on the safe side and try to prevent tick bites.
The disease develops from March to September, with the highest infections occurring in June. The disease is found almost exclusively in the western United States and Canada, mostly in high mountain areas such as Colorado and Idaho. The CTFV was first isolated from human blood in 1944.
"Rickettsia africae" is a gram-negative, obligate intracellular, pleomorphic bacterium. It belongs to the "Rickettsia" genus, which includes many bacterial species that are transmitted to humans by arthropods.
Cases of African tick bite fever have been more frequently reported in the literature among international travelers. Data examining rates in local populations are limited. Among locals who live in endemic areas, exposure at a young age and mild symptoms or lack of symptoms, as well as decreased access to diagnostic tools, may lead to decreased diagnosis. In Zimbabwe, where "R. africae" is endemic, one study reported an estimated yearly incidence of 60-80 cases per 10,000 patients.
Looking at published data over the past 35 years, close to 200 confirmed cases of African tick bite fever in international travelers have been reported. The majority (~80%) of these cases occurred in travelers returning from South Africa.
Currently, no vaccine against relapsing fever is available, but research continues. Developing a vaccine is very difficult because the spirochetes avoid the immune response of the infected person (or animal) through antigenic variation. Essentially, the pathogen stays one step ahead of antibodies by changing its surface proteins. These surface proteins, lipoproteins called variable major proteins, have only 30–70% of their amino acid sequences in common, which is sufficient to create a new antigenic "identity" for the organism. Antibodies in the blood that are binding to and clearing spirochetes expressing the old proteins do not recognize spirochetes expressing the new ones. Antigenic variation is common among pathogenic organisms. These include the agents of malaria, gonorrhea, and sleeping sickness. Important questions about antigenic variation are also relevant for such research areas as developing a vaccine against HIV and predicting the next influenza pandemic.