Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The overall case-fatality rate for ordinary-type smallpox is about 30 percent, but varies by pock distribution: ordinary type-confluent is fatal about 50–75 percent of the time, ordinary-type semi-confluent about 25–50 percent of the time, in cases where the rash is discrete the case-fatality rate is less than 10 percent. The overall fatality rate for children younger than 1 year of age is 40–50 percent. Hemorrhagic and flat types have the highest fatality rates. The fatality rate for flat-type is 90 percent or greater and nearly 100 percent is observed in cases of hemorrhagic smallpox. The case-fatality rate for variola minor is 1 percent or less. There is no evidence of chronic or recurrent infection with variola virus.
In fatal cases of ordinary smallpox, death usually occurs between the tenth and sixteenth days of the illness. The cause of death from smallpox is not clear, but the infection is now known to involve multiple organs. Circulating immune complexes, overwhelming viremia, or an uncontrolled immune response may be contributing factors. In early hemorrhagic smallpox, death occurs suddenly about six days after the fever develops. Cause of death in hemorrhagic cases involved heart failure, sometimes accompanied by pulmonary edema. In late hemorrhagic cases, high and sustained viremia, severe platelet loss and poor immune response were often cited as causes of death. In flat smallpox modes of death are similar to those in burns, with loss of fluid, protein and electrolytes beyond the capacity of the body to replace or acquire, and fulminating sepsis.
Complications of smallpox arise most commonly in the respiratory system and range from simple bronchitis to fatal pneumonia. Respiratory complications tend to develop on about the eighth day of the illness and can be either viral or bacterial in origin. Secondary bacterial infection of the skin is a relatively uncommon complication of smallpox. When this occurs, the fever usually remains elevated.
Other complications include encephalitis (1 in 500 patients), which is more common in adults and may cause temporary disability; permanent pitted scars, most notably on the face; and complications involving the eyes (2 percent of all cases). Pustules can form on the eyelid, conjunctiva, and cornea, leading to complications such as conjunctivitis, keratitis, corneal ulcer, iritis, iridocyclitis, and optic atrophy. Blindness results in approximately 35 percent to 40 percent of eyes affected with keratitis and corneal ulcer. Hemorrhagic smallpox can cause subconjunctival and retinal hemorrhages. In 2 to 5 percent of young children with smallpox, virions reach the joints and bone, causing "osteomyelitis variolosa". Lesions are symmetrical, most common in the elbows, tibia, and fibula, and characteristically cause separation of an epiphysis and marked periosteal reactions. Swollen joints limit movement, and arthritis may lead to limb deformities, ankylosis, malformed bones, flail joints, and stubby fingers.
The majority of people survive measles, though in some cases, complications may occur. Possible consequences of measles virus infection include bronchitis, sensorineural hearing loss, and—in about 1 in 10,000 to 1 in 300,000 cases—panencephalitis, which is usually fatal. Acute measles encephalitis is another serious risk of measles virus infection. It typically occurs two days to one week after the breakout of the measles rash and begins with very high fever, severe headache, convulsions and altered mentation. A person with measles encephalitis may become comatose, and death or brain injury may occur.
Measles is caused by the measles virus, a single-stranded, negative-sense, enveloped RNA virus of the genus "Morbillivirus" within the family "Paramyxoviridae". The virus was first isolated in 1954 by Nobel Laureate John F. Enders and Thomas Peebles, who were careful to point out that the isolations were made from patients who had Koplik's spots. Humans are the only natural hosts of the virus, and no other animal reservoirs are known to exist. This highly contagious virus is spread by coughing and sneezing via close personal contact or direct contact with secretions. Risk factors for measles virus infection include immunodeficiency caused by HIV or AIDS, immunosuppression following receipt of an organ or a stem cell transplant, alkylating agents, or corticosteroid therapy, regardless of immunization status; travel to areas where measles is endemic or contact with travelers to endemic areas; and the loss of passive, inherited antibodies before the age of routine immunization.
In 2012, the World Health Organization estimated that vaccination prevents 2.5 million deaths each year. If there is 100% immunization, and 100% efficacy of the vaccines, one out of seven deaths among young children could be prevented, mostly in developing countries, making this an important global health issue. Four diseases were responsible for 98% of vaccine-preventable deaths: measles, "Haemophilus influenzae" serotype b, pertussis, and neonatal tetanus.
The Immunization Surveillance, Assessment and Monitoring program of the WHO monitors and assesses the safety and effectiveness of programs and vaccines at reducing illness and deaths from diseases that could be prevented by vaccines.
Vaccine-preventable deaths are usually caused by a failure to obtain the vaccine in a timely manner. This may be due to financial constraints or to lack of access to the vaccine. A vaccine that is generally recommended may be medically inappropriate for a small number of people due to severe allergies or a damaged immune system. In addition, a vaccine against a given disease may not be recommended for general use in a given country, or may be recommended only to certain populations, such as young children or older adults. Every country makes its own vaccination recommendations, based on the diseases that are common in its area and its healthcare priorities. If a vaccine-preventable disease is uncommon in a country, then residents of that country are unlikely to receive a vaccine against it. For example, residents of Canada and the United States do not routinely receive vaccines against yellow fever, which leaves them vulnerable to infection if travelling to areas where risk of yellow fever is highest (endemic or transitional regions).
The live attenuated BCG vaccine developed against tuberculosis has been shown to have strong beneficial effects on the ability to combat non-tuberculosis infections.
Several studies have suggested that BCG vaccination may reduce atopy, particularly when given early in life. Furthermore, in multiple observational studies BCG vaccination has been shown to provide beneficial effects on overall mortality. These observations encouraged randomised controlled trials to examine BCG vaccination's beneficial non-specific effects on overall health. Since BCG vaccination is recommended to be given at birth in countries that have a high incidence of tuberculosis it would have been unethical to randomize children into 'BCG' vs. 'no BCG' groups. However, many low-income countries delay BCG vaccination for low-birth-weight (LBW) infants; this offered the opportunity to directly test the effect of BCG on overall mortality.
In the first two randomised controlled trials receipt of BCG+OPV at birth vs. OPV only ('delayed BCG') was associated with strong reductions in neonatal mortality; these effects were seen as early as 3 days after vaccination. BCG protected against sepsis as well as respiratory infections.
Among BCG vaccinated children, those who develop a BCG scar or a positive skin test (TST) are less likely to develop sepsis and exhibit an overall reduction in child mortality of around 50%.
In a recent WHO-commissioned review based on five clinical trials and nine observational studies, it was concluded that "the results indicated a beneficial effect of BCG on overall mortality in the first 6–12 months of life. Relevant follow-up in some of the trials was short, and all of the observational studies were regarded as being at risk of bias, so the confidence in the findings was rated as very low according to the GRADE criteria and "There was a suggestion that BCG vaccination may be more beneficial the earlier it is given". Furthermore, "estimated effects are in the region of a halving of mortality risk" and "any effect of BCG vaccine on all-cause mortality is not likely to be attributable to any great extent to fewer deaths from tuberculosis (i.e. to a specific effect of BCG vaccine against tuberculosis)". Based on the evidence, the WHO's Strategic Group of Experts on Immunization concluded that "the non-specific effects on all-cause mortality warrant further research".
Standard titer measles vaccine is recommended at 9 months of age in low-income countries where measles infection is endemic and often fatal. Many observational studies have shown that measles-vaccinated children have substantially lower mortality than can be explained by the prevention of measles-related deaths. Many of these observational studies were natural experiments, such as studies comparing the mortality before and after the introduction of measles vaccine and other studies where logistical factors rather than maternal choice determined whether a child was vaccinated or not.
These findings were later supported in randomized trials from 2003 to 2009 in Guinea-Bissau. An intervention group of children given standard titer measles vaccine at 4.5 and 9 month of age had a 30% reduction in all-cause mortality compared to the children in the control group, which were only vaccinated against measles at 9 month of age.
In a recent WHO-commissioned review based on four randomized trials and 18 observational studies, it was concluded that "There was consistent evidence of a beneficial effect of measles vaccine, although all observational studies were assessed as being at risk of bias and the GRADE rating was of low confidence. There was an apparent difference between the effect in girls and boys, with girls benefitting more from measles vaccination", and furthermore "estimated effects are in the region of a halving of mortality risk" and "if these effects are real then they are not fully explained by deaths that were established as due to measles". Based on the evidence, the WHO's Strategic Advisory Group of Experts on Immunization concluded that "the non-specific effects on all-cause mortality warrant further research".
Cowpox originates on the udders or teats of cows. It is classified as a zoonotic disease, which means it can be transferred from animals to humans and vice versa. Cowpox is an infectious disease. So, the disease can manifest on cows in environments where bacteria thrive, due to unsanitary conditions, or randomly. Cowpox symptoms are similar in whichever host they infect: cow, cat, human. Cowpox symptoms include round, pus filled lesions on the skin at the site of infection. In most cases of humans, the lesions develop on the inner and outer parts of the hand and fingers. In some cases, the infected person can develop a mild fever or inflammation around the lesions. Cowpox can be transferred from human to human by contact of the infected site to another individual. It is very similar in pathology and structure in contrast to small pox. However, cowpox has increased activity in between the ectoderm and endoderm layers of the human skin. Cowpox includes both A type bodies and B type inclusion bodies which largely impacts the pathology of the disease.
The WHO lists 25 diseases for which vaccines are available:
1. Measles
2. Rubella
3. Cholera
4. Meningococcal disease
5. Influenza
6. Diphtheria
7. Mumps
8. Tetanus
9. Hepatitis A
10. Pertussis
11. Tuberculosis
12. Hepatitis B
13. Pneumoccocal disease
14. Typhoid fever
15. Hepatitis E
16. Poliomyelitis
17. Tick-borne encephalitis
18. Haemophilus influenzae type b
19. Rabies
20. Varicella and herpes zoster (shingles)
21. Human papilloma-virus
22. Rotavirus gastroenteritis
23. Yellow fever
24. Japanese encephalitis
25. Malaria
26. Dengue fever
Cowpox is an infectious disease caused by the cowpox virus. The virus, part of the orthopoxvirus family, is closely related to the "vaccinia" virus. The virus is zoonotic, meaning that it is transferable between species, such as from animal to human. The transferral of the disease was first observed in dairymaids who touched the udders of infected cows and consequently developed the signature pustules on their hands. Cowpox is more commonly found in animals other than bovines, such as rodents. Cowpox is similar to, but much milder than, the highly contagious and often deadly smallpox disease. Its close resemblance to the mild form of smallpox and the observation that dairymaids were immune from smallpox inspired the first smallpox vaccine, created and administered by English physician Edward Jenner.
The word “vaccination,” coined by Jenner in 1796, is derived from the Latin root "vaccinus", meaning of or from the cow. Once vaccinated, a patient develops antibodies that make them immune to cowpox, but they also develop immunity to the smallpox virus, or "Variola virus". The cowpox vaccinations and later incarnations proved so successful that in 1980, the World Health Organization announced that smallpox was the first disease to be eradicated by vaccination efforts worldwide. Other orthopox viruses remain prevalent in certain communities and continue to infect humans, such as the cowpox virus (CPXV) in Europe, vaccinia in Brazil, and monkeypox virus in Central and West Africa.
Alastrim, also known as variola minor, was the milder strain of the variola virus that caused smallpox. The last known case of variola minor was in Somalia, Africa in 1977. Smallpox was formally declared eradicated in May 1980.
Variola minor is of the genus orthopoxvirus, which are DNA viruses that replicate in the cytoplasm of the affected cell, rather than in its nucleus. Like variola major, alastrim was spread through inhalation of the virus in the air, which could occur through face-to-face contact or through fomites. Infection with variola minor conferred immunity against the more dangerous variola major.
Variola minor was a less common form of the virus, and much less deadly. Although alastrim had the same incubation period and pathogenetic stages as smallpox, alastrim is believed to have had a mortality rate of less than 1%, as compared to smallpox's 30%.
Because alastrim was a less debilitating disease than smallpox, patients were more frequently ambulant and thus able to infect others more rapidly. As such, variola minor swept through the USA, Great Britain, and South Africa in the early 20th century, becoming the dominant form of the disease in those areas and thus rapidly decreasing mortality rates.
Alastrim was also called white pox, kaffir pox, Cuban itch, West Indian pox, milk pox, and pseudovariola.
Like smallpox, alastrim has now been totally eradicated from the globe thanks to the 1960s Global Smallpox Eradication campaign. The last case of indigenous variola minor was reported in a Somalian cook, Ali Maow Maalin, in October 1977, and smallpox was officially declared eradicated worldwide in May 1980.
Currently, there is no proven, safe treatment for monkeypox. The people who have been infected can be vaccinated up to 14 days after exposure.
Vaccination against smallpox is assumed to provide protection against human monkeypox infection considering they are closely related viruses and the vaccine protects animals from experimental lethal monkeypox challenge. This has not been conclusively demonstrated in humans because routine smallpox vaccination was discontinued following the apparent eradication of smallpox and due to safety concerns with the vaccine.
Smallpox vaccine has been reported to reduce the risk of monkeypox among previously vaccinated persons in Africa. The decrease in immunity to poxviruses in exposed populations is a factor in the prevalence of monkeypox. It is attributed both to waning cross-protective immunity among those vaccinated before 1980 when mass smallpox vaccinations were discontinued, and to the gradually increasing proportion of unvaccinated individuals. The United States Centers for Disease Control and Prevention (CDC) recommends that persons investigating monkeypox outbreaks and involved in caring for infected individuals or animals should receive a smallpox vaccination to protect against monkeypox. Persons who have had close or intimate contact with individuals or animals confirmed to have monkeypox should also be vaccinated.
CDC does not recommend preexposure vaccination for unexposed veterinarians, veterinary staff, or animal control officers, unless such persons are involved in field investigations.
Hemorrhagic smallpox, sometimes called bloody pox, fulminant smallpox, and blackpox, is a severe and rare form of smallpox and is usually fatal. Like all forms of smallpox it is caused by the variola virus. It is characterized by an incubation period of 7 to 14 days. It has two stages, the first begins with fever, headache, chills, nausea, vomiting and severe muscle aches. The skin flushes in a deep-purple, uneven pattern across the face. The early stage is often mistaken for measles. The late stage is characterized by the appearance of small blisters resembling a severe form of chickenpox. These small blisters then flatten until they are even with the skin, and change into reddish lesions similar to those seen in measles. The skin then turns a deep purple. Lesions appear inside the mouth and active bleeding from oral and nasal mucous membranes is common. This is followed by active bleeding in the gastrointestinal tract, and blood appears in the stool and urine. Blood studies resemble the clinical values of disseminated intravascular coagulation.
Death rates during outbreaks were usually extremely high, approaching 100% in immunologically naïve populations. The disease was mainly spread by direct contact and by drinking contaminated water, although it could also be transmitted by air.
Initial symptoms include fever, loss of appetite, and nasal and eye discharges. Subsequently, irregular erosions appear in the mouth, the lining of the nose, and the genital tract. Acute diarrhea, preceded by constipation, is also a common feature. Most animals die six to twelve days after the onset of these clinical signs.
Studies have found that men have a higher risk of getting XDR-TB than women. One study showed that the male to female ratio was more than threefold, with statistical relevance (P<0.05) Studies done on the effect of age and XDR-TB have revealed that individuals who are 65 and up are less likely to get XDR-TB. A study in Japan found that XDR-TB patients are more likely to be younger.
Rinderpest (also cattle plague or steppe murrain) was an infectious viral disease of cattle, domestic buffalo, and many other species of even-toed ungulates, including buffaloes, large antelope and deer, giraffes, wildebeests, and warthogs. The disease was characterized by fever, oral erosions, diarrhea, lymphoid necrosis, and high mortality. Death rates during outbreaks were usually extremely high, approaching 100% in immunologically naïve populations. Rinderpest was mainly transmitted by direct contact and by drinking contaminated water, although it could also be transmitted by air. After a global eradication campaign, the last confirmed case of rinderpest was diagnosed in 2011.
On 14 October 2010, the United Nations Food and Agriculture Organization (FAO) announced that field activities in the decades-long, worldwide campaign to eradicate the disease were ending, paving the way for a formal declaration in June 2011 of the global eradication of rinderpest. On 25 May 2011, the World Organisation for Animal Health announced the free status of the last eight countries not yet recognized (a total of 198 countries were now free of the disease), officially declaring the eradication of the disease. In June 2011, the United Nations FAO confirmed the disease was eradicated, making rinderpest only the second disease in history to be fully wiped out (outside laboratory stocks), following smallpox.
Rinderpest is believed to have originated in Asia, later spreading through the transport of cattle. The term "Rinderpest" is a German word meaning "cattle-plague". The rinderpest virus (RPV) was closely related to the measles and canine distemper viruses. The measles virus emerged from rinderpest as a zoonotic disease between 1000 and 1100 AD, a period that may have been preceded by limited outbreaks involving a virus not yet fully acclimated to humans.
Carriers who refuse to wear a mask in public have been indefinitely involuntarily committed to regular jails, and cut off from contacting the world. Some have run away from the USA, complaining of abuse.
The best prevention against viral pneumonia is vaccination against influenza, adenovirus, chickenpox, herpes zoster, measles, and rubella.
Eczema vaccinatum is a serious medical condition that requires immediate and intensive medical care. Therapy has been supportive, such as antibiotics, fluid replacement, antipyretics and analgesics, skin healing, etc.; vaccinia immune globulin (VIG) could be very useful but supplies may be deficient as of 2006. Antiviral drugs have been examined for activity in pox viruses and cidofovir is believed to display potential in this area.
Viral pneumonia occurs in about 200 million people a year which includes about 100 million children and 100 million adults.
In March 2007, a two-year-old Indiana boy and his mother contracted the life-threatening vaccinia infection from his father who was vaccinated against smallpox as part of the standard vaccination protocol for individuals serving in the US armed forces beginning in 2002. The child developed the pathognomonic rash which typifies eczema vaccinatum over 80 percent of his body surface area. The boy has a history of eczema, which is a known risk factor for vaccinia infection.
The U.S. Centers for Disease Control and Prevention (CDC) publishes a journal "Emerging Infectious Diseases" that identifies the following factors contributing to disease emergence:
- Microbial adaption; e.g. genetic drift and genetic shift in Influenza A
- Changing human susceptibility; e.g. mass immunocompromisation with HIV/AIDS
- Climate and weather; e.g. diseases with zoonotic vectors such as West Nile Disease (transmitted by mosquitoes) are moving further from the tropics as the climate warms
- Change in human demographics and trade; e.g. rapid travel enabled SARS to rapidly propagate around the globe
- Economic development; e.g. use of antibiotics to increase meat yield of farmed cows leads to antibiotic resistance
- Breakdown of public health; e.g. the current situation in Zimbabwe
- Poverty and social inequality; e.g. tuberculosis is primarily a problem in low-income areas
- War and famine
- Bioterrorism; e.g. 2001 Anthrax attacks
- Dam and irrigation system construction; e.g. malaria and other mosquito borne diseases
Contact with farm animals can lead to disease in farmers or others that come into contact with infected animals. Glanders primarily affects those who work closely with horses and donkeys. Close contact with cattle can lead to cutaneous anthrax infection, whereas inhalation anthrax infection is more common for workers in slaughterhouses, tanneries and wool mills. Close contact with sheep who have recently given birth can lead to clamydiosis, or enzootic abortion, in pregnant women, as well as an increased risk of Q fever, toxoplasmosis, and listeriosis in pregnant or the otherwise immunocompromised. Echinococcosis is caused by a tapeworm which can be spread from infected sheep by food or water contaminated with feces or wool. Bird flu is common in chickens. While rare in humans, the main public health worry is that a strain of bird flu will recombine with a human flu virus and cause a pandemic like the 1918 Spanish flu. In 2017, free range chickens in the UK were temporarily ordered to remain inside due to the threat of bird flu. Cattle are an important reservoir of cryptosporidiosis and mainly affects the immunocompromised.
An airborne disease can be caused by exposure to a source: an infected patient or animal, by being transferred from the infected person or animal’s mouth, nose, cut, or needle puncture. People receive the disease through a portal of entry: mouth, nose, cut, or needle puncture.