Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The actual incidence of this disease is not known, but only 243 cases have been reported in the scientific literature, suggesting an incidence of on the order of one affected person in ten million people.
Many professionals that are likely to be involved in the treatment of those with Stickler's syndrome, include anesthesiologists, oral and maxillofacial surgeons; craniofacial surgeons; ear, nose, and throat specialists, ophthalmologists, optometrists, audiologists, speech pathologists, physical therapists and rheumatologists.
Overall, the estimated prevalence of Stickler syndrome is about 1 in 10,000 people. Stickler syndrome affects 1 in 7,500 to 9,000 newborns.
The specific cause of camptodactyly remains unknown, but there are a few deficiencies that lead to the condition. A deficient lumbrical muscle controlling the flexion of the fingers, and abnormalities of the flexor and extensor tendons.
A number of congenital syndromes may also cause camptodactyly:
- Jacobsen syndrome
- Beals Syndrome
- Blau syndrome
- Freeman-Sheldon syndrome
- Cerebrohepatorenal syndrome
- Weaver syndrome
- Christian syndrome 1
- Gordon Syndrome
- Jacobs arthropathy-camptodactyly syndrome
- Lenz microphthalmia syndrome
- Marshall-Smith-Weaver syndrome
- Oculo-dento-digital syndrome
- Tel Hashomer camptodactyly syndrome
- Toriello-Carey syndrome
- Stuve-Wiedemann syndrome
- Loeys-Dietz syndrome
- Fryns syndrome
- Marfan's syndrome
- Carnio-carpo-tarsal dysthropy
Sugarman syndrome is the common name of autosomal recessive oral-facial-digital syndrome type III, one of ten distinct genetic disorders that involve developmental defects to the mouth.
Alternative names for this condition include: Brachydactyly of the hands and feet with duplication of the first toes, Sugarman brachydactyly and Brachydactyly with major proximal phalangeal shortening.
Cenani–Lenz syndactylism is inherited in an autosomal recessive manner. This means the defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
In a test of the theory that the locus associated with the disorder was at 15q13-q14, FMN1 and GREM1 were eliminated as candidates.
It is associated with "LRP4".
ODD is typically an autosomal dominant condition, but can be inherited as a recessive trait. It is generally believed to be caused by a mutation in the gene GJA1, which codes for the gap junction protein connexin 43. Slightly different mutations in this gene may explain the different way the condition manifests in different families. Most people inherit this condition from one of their parents, but new cases do arise through novel mutations. The mutation has high penetrance and variable expression, which means that nearly all people with the gene show signs of the condition, but these signs can range from very mild to very obvious.
Currently there are no open research studies for otodental syndrome. Due to the rarity of this disease, current research is very limited.
The most recent research has involved case studies of the affected individuals and/or families, all of which show the specific phenotypic symptoms of otodental syndrome. Investigations on the effects of FGF3 and FADD have also been performed. These studies have shown successes in supporting previous studies that mutations to FGF3 and neighboring genes may cause the associated phenotypic abnormalities. According to recent studies involving zebrafish embryos, there is also support in that the FADD gene contributed to ocular coloboma symptoms as well.
Future research studies are required in order to better grasp the specific relationship between the gene involved and its effect on various tissues and organs such as teeth, eyes, and ear. Little is known and there is still much to be determined.
Cenani–Lenz syndactylism, also known as Cenani–Lenz syndrome or Cenani–syndactylism, is an autosomal recessive congenital malformation syndrome involving both upper and lower extremities.
Oral-facial-digital syndrome is a group of at least 13 related conditions that affect the development of the mouth, facial features, and digits in between 1 in 50,000 to 250,000 newborns with the majority of cases being type I (Papillon-League-Psaume syndrome).
Möbius syndrome results from the underdevelopment of the VI and VII cranial nerves. The VI cranial nerve controls lateral eye movement, and the VII cranial nerve controls facial expression.
The causes of Möbius syndrome are poorly understood. Möbius syndrome is thought to result from a vascular disruption (temporary loss of bloodflow) in the brain during prenatal development. There could be many reasons that a vascular disruption leading to Möbius syndrome might occur. Most cases do not appear to be genetic. However, genetic links have been found in a few families. Some maternal trauma may result in impaired or interrupted blood flow (ischemia) or lack of oxygen (hypoxia) to a developing fetus. Some cases are associated with reciprocal translocation between chromosomes or maternal illness. In the majority of cases of Möbius syndrome in which autosomal dominant inheritance is suspected, sixth and seventh cranial nerve paralysis (palsy) occurs without associated limb abnormalities.
The use of drugs and a traumatic pregnancy may also be linked to the development of Möbius syndrome. The use of the drugs misoprostol or thalidomide by women during pregnancy has been linked to the development of Möbius syndrome in some cases. Misoprostol is used to induce abortions in Brazil and Argentina as well as in the United States. Misoprostol abortions are successful 90% of the time, meaning that 10% of the time the pregnancy continues. Studies show that the use of misoprostal during pregnancy increases the risk of developing Möbius syndrome by a factor of 30. While this is a dramatic increase in risk, the incidence of Möbius syndrome without misoprostal use is estimated at one in 50000 to 100000 births (making the incidence of Möbius syndrome with misoprostol use, less than one in 1000 births). The use of cocaine (which also has vascular effects) has been implicated in Möbius syndrome.
Some researchers have suggested that the underlying problem of this disorder could be congenital hypoplasia or agenesis of the cranial nerve nuclei. Certain symptoms associated with Möbius syndrome may be caused by incomplete development of facial nerves, other cranial nerves, and other parts of the central nervous system.
Recent research has been focused on studying large series of cases of 3-M syndrome to allow scientists to obtain more information behind the genes involved in the development of this disorder. Knowing more about the underlying mechanism can reveal new possibilities for treatment and prevention of genetic disorders like 3-M syndrome.
- One study looks at 33 cases of 3M syndrome, 23 of these cases were identified as CUL7 mutations: 12 being homozygotes and 11 being heterozygotes. This new research shows genetic heterogeneity in 3M syndrome, in contrast to the clinical homogeneity. Additional studies are still ongoing and will lead to the understanding of this new information.
- This study provides more insight on the three genes involved in 3M syndrome and how they interact with each other in normal development. It lead to the discovery that the CUL7, OBS1, and CCDC8 form a complex that functions to maintain microtubule and genomic integrity.
The condition develops in the fetus at approximately 4 weeks gestational age, when some form of vascular problem such as blood clotting leads to insufficient blood supply to the face. This can be caused by physical trauma, though there is some evidence of it being hereditary . This restricts the developmental ability of that area of the face. Currently there are no definitive reasons for the development of the condition.
3-M syndrome is most often caused by a mutation in the gene CUL7, but can also be seen with mutations in the genes OBS1 and CCDC8 at lower frequencies. This is an inheritable disorder and can be passed down from parent to offspring in an autosomal recessive pattern. An individual must receive two copies of the mutated gene, one from each parent, in order to be have 3-M syndrome. An individual can be a carrier for the disorder if they inherit only one mutant copy of the gene, but will not present any of the symptoms associated with the disorder.
Since 3-M syndrome is a genetic condition there are no known methods to preventing this disorder. However, genetic testing on expecting parents and prenatal testing, which is a molecular test that screens for any problems in the heath of a fetus during pregnancy, may be available for families with a history of this disorder to determine the fetus' risk in inheriting this genetic disorder.
Otodental syndrome is a rare condition that is genetically inherited in an autosomal dominant manner. Although there is no specific biological mechanism for otodental syndrome, what is recognized is that there is a genetic mutation, known as haploinsufficiency, that occurs in the fibroblast growth factor 3 (FGF3) gene (11q13). This is the alleged cause of the physical abnormalities and symptoms associated with otodental syndrome. Although in individuals with signs of ocular coloboma, a microdeletion in the Fas-associated death domain (FADD) gene (11q13.3) was also found to be responsible. There is variable penetrance and variable gene expression within these genetic mutations. Individuals with sensorineural hearing loss are believed to have a local lesion in the auditory segment of the inner ear, known as the cochlea. The biological mechanism for this is currently unknown as well.
Urofacial Syndrome occurs due to either disruption or mutation of a gene on chromosome 10q23q24. The gene is located on a 1 centimorgan interval between D10S1433 and D10S603. Alteration of this gene leads to alteration of facial and urinary developmental fields. This gene is believed to be the HPSE2 gene. The HPSE2 gene is expressed in both the central nervous system as well as the bladder. Heparanase 2 is protein coded by exons 8 and 9 on the HPSE2 gene. This protein is believed to be altered in the case of this syndrome. Studies performed on mice indicate that HPSE2 has no enzymatic activity.
Mutations in the HPSE2 gene on chromosome 10q23q24 have been observed to cause Ochoa Syndrome. This means the defective gene responsible for the disorder is located on an autosome (chromosome 10 is an autosome), and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
The relationship between a defective HPSE2 gene and Ochoa syndrome is unclear. There is postulation that the genetic changes may lead to an abnormality in the brain region, evidence for this postulation is that the areas of the brain that control facial expression and urination are in close proximity of each other. Other hypotheses think that the defective heparanase 2 protein may lead to problems with development of the urinary tract or with muscle function in the face and bladder.
After the last primary tooth is lost, usually around the age of twelve, final orthodontic treatment can be initiated. A patient that has not been able to close or swallow well probably will have an open bite, deficient lower-jaw growth, a narrow archform with crowded teeth, and upper anterior flaring of teeth. Orthognathic (jaw) surgery may be indicated. This should be completed in most situations before the smile surgery where the gracilis muscle is grafted to the face.
Genetic links to 13q12.2 and 1p22 have been suggested.
Urofacial syndrome ( or hydronephrosis with peculiar facial expression), is an autosomal recessive congenital disorder characterized by inverted facial expressions in association with obstructive disease of the urinary tract. The inverted facial expression presented by children with this syndrome allows for early detection of the syndrome, this inverted smile is easy to see when the child is smiling and laughing. Early detection is vital for establishing a better prognosis as urinary related problems associated with this disease can cause harm if left untreated. Incontinence is another easily detectable symptom of the syndrome that is due to detrusor-sphincter discoordination, although it can easily be mistaken for pyelonephritis.
It may be associated with "HPSE2".
Nakajo syndrome is inherited in an autosomal recessive manner. This means the defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
The prevalence has been estimated at 1 in 10,000 births, but exact values are hard to know because some that have the symptoms rarely have Pierre-Robin sequence (without any other associated malformation).
Nakajo syndrome, also called nodular erythema with digital changes, is a rare autosomal recessive congenital disorder first reported in 1939 by A. Nakajo in the offspring of consanguineous (blood relative) parents. The syndrome can be characterized by erythema (reddened skin), loss of body fat in the upper part of the body, and disproportionately large eyes, ears, nose, lips, and fingers.
The condition is also known by various other names:
- Lateral facial dysplasia
- First and second branchial arch syndrome
- Oral-mandibular-auricular syndrome
- Otomandibular dysostosis
- Craniofacial microsomia
22q11.2 deletion syndrome was estimated to affect between one in 2000 and one in 4000 live births. This estimate is based on major birth defects and may be an underestimate, because some individuals with the deletion have few symptoms and may not have been formally diagnosed. It is one of the most common causes of mental retardation due to a genetic deletion syndrome.
The prevalence of 22q11.2DS has been expected to rise because of multiple reasons: (1) Thanks to surgical and medical advances, an increasing number of people are surviving heart defects associated with the syndrome. These individuals are in turn having children. The chances of a 22q11.2DS patient having an affected child is 50% for each pregnancy; (2) Parents who have affected children, but who were unaware of their own genetic conditions, are now being diagnosed as genetic testing become available; (3) Molecular genetics techniques such as FISH (fluorescence in situ hybridization) have limitations and have not been able to detect all 22q11.2 deletions. Newer technologies have been able to detect these atypical deletions.
Recently, the syndrome has been estimated to affect up to one in 2000 live births. Testing for 22q11.2DS in over 9500 pregnancies revealed a prevalence rate of 1/992.
The pattern of inheritance is determined by the phenotypic expression of a gene—which is called "expressivity". Camptodactyly can be passed on through generations in various levels of phenotypic expression, which include both or only one hand. This means that the genetic expressivity is incomplete. It can be inherited from either parent.
In most of its cases, camptodactyly occurs sporadically, but it has been found in several studies that it is inherited as an autosomal dominant condition.
In a newborn boy thought to have Fryns syndrome, Clark and Fenner-Gonzales (1989) found mosaicism for a tandem duplication of 1q24-q31.2. They suggested that the gene for this disorder is located in that region. However, de Jong et al. (1989), Krassikoff and Sekhon (1990), and Dean et al. (1991) found possible Fryns syndrome associated with anomalies of chromosome 15, chromosome 6, chromosome 8(human)and chromosome 22, respectively. Thus, these cases may all represent mimics of the mendelian syndrome and have no significance as to the location of the gene for the recessive disorder.
By array CGH, Slavotinek et al. (2005) screened patients with DIH and additional phenotypic anomalies consistent with Fryns syndrome for cryptic chromosomal aberrations. They identified submicroscopic chromosome deletions in 3 probands who had previously been diagnosed with Fryns syndrome and had normal karyotyping with G-banded chromosome analysis. Two female infants were found to have microdeletions involving 15q26.2 (see 142340), and 1 male infant had a deletion in band 8p23.1 (see 222400).