Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Toxic optic neuropathy refers to the ingestion of a toxin or an adverse drug reaction that results in vision loss from optic nerve damage. Patients may report either a sudden loss of vision in both eyes, in the setting of an acute intoxication, or an insidious asymmetric loss of vision from an adverse drug reaction. The most important aspect of treatment is recognition and drug withdrawal.
Among the many causes of TON, the top 10 toxins include:
- Medications
- Ethambutol, rifampin, isoniazid, streptomycin (tuberculosis treatment)
- Linezolid (taken for bacterial infections, including pneumonia)
- Chloramphenicol (taken for serious infections not helped by other antibiotics)
- Isoretinoin (taken for severe acne that fails to respond to other treatments)
- Ciclosporin (widely used immunosuppressant)
- Acute Toxins
- Methanol (component of some moonshine, and some cleaning products)
- Ethylene glycol (present in anti-freeze and hydraulic brake fluid)
Metabolic disorders may also cause this version of disease. Systemic problems such as diabetes mellitus, kidney failure, and thyroid disease can cause optic neuropathy, which is likely through buildup of toxic substances within the body. In most cases, the cause of the toxic neuropathy impairs the tissue’s vascular supply or metabolism. It remains unknown as to why certain agents are toxic to the optic nerve while others are not and why particularly the papillomacular bundle gets affected.
In Northern European populations about one in 9000 people carry one of the three primary LHON mutations.
The LHON ND4 G11778A mutation dominates as the primary mutation in most of the world
with 70% of Northern European cases and 90% of Asian cases. Due to a Founder effect, the LHON ND6 T14484C mutation accounts for 86% of LHON cases in Quebec, Canada.
More than 50 percent of males with a mutation and more than 85 percent of females with a mutation never experience vision loss or related medical problems. The particular mutation type may predict the likelihood of penetrance, severity of illness and probability of vision recovery in the affected. As a rule of thumb, a woman who harbors a homoplasmic primary LHON mutation has a ~40% risk of having an affected son and a ~10% risk of having an affected daughter.
Additional factors may determine whether a person develops the signs and symptoms of this disorder. Environmental factors such as smoking and alcohol use may be involved, although studies of these factors have produced conflicting results. Researchers are also investigating whether changes in additional genes, particularly genes on the X chromosome,
Those diseases understood as congenital in origin could either be specific to the ocular organ system (LHON, DOA) or syndromic (MELAS, Multiple Sclerosis). It is estimated that these inherited optic neuropathies in the aggregate affect 1 in 10,000
Of the acquired category, disease falls into further etiological distinction as arising from toxic (drugs or chemicals) or nutritional/metabolic (vitamin deficiency/diabetes) insult. It is worth mentioning that under-nutrition and toxic insult can occur simultaneously, so a third category may be understood as having a combined or mixed etiology. We will refer to this as Toxic/Nutritional Optic Neuropathy, whereby nutritional deficiencies and toxic/metabolic insults are the simultaneous culprits of visual loss associated with damage and disruption of the RGC and optic nerve mitochondria.
The incidence of dominant optic atrophy has been estimated to be 1:50000 with prevalence as high as 1:10000 in the Danish population (Votruba, 1998). Dominant optic atrophy is inherited in an autosomal dominant manner. That is, a heterozygous patient with the disease has a 50% chance of passing on the disease to offspring, assuming his/her partner does not have the disease. Males and females are affected at the same rate. Although Kjer's has a high penetrance (98%), severity and progression of DOA are extremely variable even within the same family.
Dominant optic atrophy is also known as autosomal dominant optic atrophy, Kjer type; Kjer optic atrophy; or, Kjer's autosomal dominant optic atrophy.
Retinitis pigmentosa is the leading cause of inherited blindness, with approximately 1/4,000 individuals experiencing the non-syndromic form of their disease within their lifetime. It is estimated that 1.5 million people worldwide are currently affected. Early onset RP occurs within the first few years of life and is typically associated with syndromic disease forms, while late onset RP emerges from early to mid-adulthood.
Autosomal dominant and recessive forms of retinitis pigmentosa affect both male and female populations equally; however, the less frequent X-linked form of the disease affects male recipients of the X-linked mutation, while females usually remain unaffected carriers of the RP trait. The X-linked forms of the disease are considered severe, and typically lead to complete blindness during later stages. In rare occasions, a dominant form of the X-linked gene mutation will affect both males and females equally.
Due to the genetic inheritance patterns of RP, many isolate populations exhibit higher disease frequencies or increased prevalence of a specific RP mutation. Pre-existing or emerging mutations that contribute to rod photoreceptor degeneration in retinitis pigmentosa are passed down through familial lines; thus, allowing certain RP cases to be concentrated to specific geographical regions with an ancestral history of the disease. Several hereditary studies have been performed to determine the varying prevalence rates in Maine (USA), Birmingham (England), Switzerland (affects 1/7000), Denmark (affects 1/2500), and Norway. Navajo Indians display an elevated rate of RP inheritance as well, which is estimated as affecting 1 in 1878 individuals. Despite the increased frequency of RP within specific familial lines, the disease is considered non-discriminatory and tends to equally affect all world populations.
HSAN I constitutes a clinically and genetically heterogeneous group of diseases of low prevalence. Detailed epidemiological data are currently not available. The frequency of the disease is still reflected by reports of a handful affected families. Although the impressive clinical features of HSAN I are seen by neurologists, general practitioners, orthopedists, and dermatologists, the condition might still be under-recognized particularly for sporadic cases and patients who do not exhibit the characteristic clinical features.
The first symptom is typically diabetes mellitus, which is usually diagnosed around the age of 6. The next symptom to appear is often optic atrophy, the wasting of optic nerves, around the age of 11. The first signs of this are loss of colour vision and peripheral vision. The condition worsens over time, and people with optic atrophy are usually blind within 8 years of the first symptoms. Life expectancy of people suffering from this syndrome is about 30 years.
Leber's hereditary optic neuropathy (LHON) or Leber hereditary optic atrophy is a mitochondrially inherited (transmitted from mother to offspring) degeneration of retinal ganglion cells (RGCs) and their axons that leads to an acute or subacute loss of central vision; this affects predominantly young adult males. LHON is only transmitted through the mother, as it is primarily due to mutations in the mitochondrial (not nuclear) genome, and only the egg contributes mitochondria to the embryo. LHON is usually due to one of three pathogenic mitochondrial DNA (mtDNA) point mutations. These mutations are at nucleotide positions 11778 G to A, 3460 G to A and 14484 T to C, respectively in the ND4, ND1 and ND6 subunit genes of complex I of the oxidative phosphorylation chain in mitochondria. Men cannot pass on the disease to their offspring.
There is no known direct treatment. Current treatment efforts focus on managing the complications of Wolfram syndrome, such as diabetes mellitus and diabetes insipidus.
In industrialized nations, toxic and nutritional optic neuropathy is relatively uncommon and is primarily associated with specific medications, occupational exposures, or tobacco and alcohol abuse. However, in developing nations, nutritional optic neuropathy is much more common, especially in regions afflicted by famine. Both genders and all races are equally affected, and all ages are susceptible.
The predominant cause of nutritional optic neuropathy is thought to be deficiency of B-complex vitamins, particularly thiamine (vitamin B), cyanocobalamin (vitamin B) and recently copper Deficiency of pyridoxine (vitamin B), niacin (vitamin B), riboflavin (vitamin B), and/or folic acid also seems to play a role. Those individuals who abuse alcohol and tobacco are at greater risk because they tend to be malnourished. Those with pernicious anemia are also at risk due to an impaired ability to absorb vitamin B from the intestinal tract.
The most recognized cause of a toxic optic neuropathy is methanol intoxication. This can be a life-threatening event that normally accidentally occurs when the victim mistook, or substituted, methanol for ethyl alcohol. Blindness can occur with drinking as little as an ounce of methanol, but this can be counteracted by concurrent drinking of ethyl alcohol. The patient initially has nausea and vomiting, followed by respiratory distress, headache, and visual loss 18–48 hours after consumption. Without treatment, patients can go blind, and their pupils will dilate and stop reacting to light.
- Ethylene glycol, a component of automobile antifreeze, is a poison that is toxic to the whole body including the optic nerve. Consumption can be fatal, or recovery can occur with permanent neurologic and ophthalmologic deficits. While visual loss is not very common, increased intracranial pressure can cause bilateral optic disc swelling from cerebral edema. A clue to the cause of intoxication is the presence of oxalate crystals in the urine. Like methanol intoxication, treatment is ethanol consumption.
- Ethambutol, a drug commonly used to treat tuberculosis, is notorious for causing toxic optic neuropathy. Patients with vision loss from ethambutol toxicity lose vision in both eyes equally. This initially presents with problems with colors (dyschromatopsia) and can leave central visual deficits. If vision loss occurs while using ethambutol, it would be best to discontinue this medication under a doctor’s supervision. Vision can improve slowly after discontinuing ethambutol but rarely returns to baseline.
- Amiodarone is an antiarrhythmic medication commonly used for abnormal heart rhythms (atrial or ventricular tachyarrythmias). Most patients on this medication get corneal epithelial deposits, but this medication has also been controversially associated with NAION. Patients on amiodarone with new visual symptoms should be evaluated by an ophthalmologist.
- Tobacco exposure, most commonly through pipe and cigar smoking, can cause an optic neuropathy. Middle-aged or elderly men are often affected and present with painless, slowly progressive, color distortion and visual loss in both eyes. The mechanism is unclear, but this has been reported to be more common in individuals who are already suffering from malnutrition.
Perioperative PION patients have a higher prevalence of cardiovascular risk factors than in the general population. Documented cardiovascular risks in people affected by perioperative PION include high blood pressure, diabetes mellitus, high levels of cholesterol in the blood, tobacco use, abnormal heart rhythms, stroke, and obesity. Men are also noted to be at higher risk, which is in accordance with the trend, as men are at higher risk of cardiovascular disease. These cardiovascular risks all interfere with adequate blood flow, and also may suggest a contributory role of defective vascular autoregulation.
Mitochondria play a central role in maintaining the life cycle of retinal ganglion cells because of their high energy dependence. Mitochondria are made within the central somata of the retinal ganglion cell, transported down axons, and distributed where they are needed. Genetic mutations in mitochondrial DNA, vitamin depletion, alcohol and tobacco abuse, and use of certain drugs can cause derangements in efficient transport of mitochondria, which can cause a primary or secondary optic neuropathy.
Hereditary sensory and autonomic neuropathy type I (HSAN I) or hereditary sensory neuropathy type I (HSN I) is a group of autosomal dominant inherited neurological diseases that affect the peripheral nervous system particularly on the sensory and autonomic functions. The hallmark of the disease is the marked loss of pain and temperature sensation in the distal parts of the lower limbs. The autonomic disturbances, if present, manifest as sweating abnormalities.
The beginning of the disease varies between adolescence and adulthood. Since affected individuals cannot feel pain, minor wounds or blisters in the painless area may not be immediately recognized and can develop into extensive and deep foot ulcerations. Once infection occurs, the complications such as inflammation and progressive destruction of the underlying bones may follow and may require amputation of the surrounding area.
HSAN I is the most common type among the five types of HSAN. As a heterogeneous group of diseases, HSAN I can be divided into five subtypes HSAN IA-E. Most of the genes associated with the diseases have been identified. However, the molecular pathways leading to the manifestation of the diseases are not fully understood. Therefore, the potential targets for therapeutic interventions are not known. Moreover, gene-based therapies for patients with the diseases are not available to date, hence supportive care is the only treatment available for the patients.
Behr syndrome is characterized by the association of early-onset optic atrophy with spinocerebellar degeneration resulting in ataxia, pyramidal signs, peripheral neuropathy and developmental delay.
Although it is an autosomal recessive disorder, heterozygotes may still manifest much attenuated symptoms. Autosomal dominant inheritance also being reported in a family. Recently a variant of OPA1 mutation with phenotypic presentation like Behr syndrome is also described. Some reported cases have been found to carry mutations in the OPA1, OPA3 or C12ORF65 genes which are known causes of pure optic atrophy or optic atrophy complicated by movement disorder.
Genetic tests and related research are currently being performed at Centogene AG in Rostock, Germany; John and Marcia Carver Nonprofit Genetic Testing Laboratory in Iowa City, IA; GENESIS Center for Medical Genetics in Poznan, Poland; Miraca Genetics Laboratories in Houston, TX; Asper Biotech in Tartu, Estonia; CGC Genetics in Porto, Portugal; CEN4GEN Institute for Genomics and Molecular Diagnostics in Edmonton, Canada; and Reference Laboratory Genetics - Barcelona, Spain.
RP may be:
(1) Non-syndromic, that is, it occurs alone, without any other clinical findings,
(2) Syndromic, with other neurosensory disorders, developmental abnormalities, or complex clinical findings, or
(3) Secondary to other systemic diseases.
- RP combined with deafness (congenital or progressive) is called Usher syndrome.
- Alport's syndrome is associated with RP and an abnormal glomerular-basement membrane leading nephrotic syndrome and inherited as X-linked dominant.
- RP combined with ophthalmoplegia, dysphagia, ataxia, and cardiac conduction defects is seen in the mitochondrial DNA disorder Kearns-Sayre syndrome (also known as Ragged Red Fiber Myopathy)
- RP combined with retardation, peripheral neuropathy, acanthotic (spiked) RBCs, ataxia, steatorrhea, is absence of VLDL is seen in abetalipoproteinemia.
- RP is seen clinically in association with several other rare genetic disorders (including muscular dystrophy and chronic granulomatous disease) as part of McLeod syndrome. This is an X-linked recessive phenotype characterized by a complete absence of XK cell surface proteins, and therefore markedly reduced expression of all Kell red blood cell antigens. For transfusion purposes these patients are considered completely incompatible with all normal and K0/K0 donors.
- RP associated with hypogonadism, and developmental delay with an autosomal recessive inheritance pattern is seen with Bardet-Biedl syndrome
Other conditions include neurosyphilis, toxoplasmosis and Refsum's disease.
Onset : Early childhood
Progression: Chronic progressive
Clinical: Cerebellar ataxia plus syndrome / Optic Atrophy Plus Syndrome
Ocular: Optic atrophy, nystagmus, scotoma, and bilateral retrobulbar neuritis.
Other: Mental retardation, myoclonic epilepsy, spasticity, and posterior column sensory loss. Tremor in some cases.
Musculoskeletal
Contractures, lower limbs, Achilles tendon contractures, Hamstring contractures, Adductor longus contractures
Systemic
Hypogonadotrophic hypogonadism.
Leber's congenital amaurosis (LCA) is a rare inherited eye disease that appears at birth or in the first few months of life.
One form of LCA was successfully treated with gene therapy in 2008.
It affects about 1 in 40,000 newborns. LCA was first described by Theodor Leber in the 19th century. It should not be confused with Leber's hereditary optic neuropathy, which is a different disease also described by Theodor Leber.
Hereditary neuropathy with liability to pressure palsy is an autosomal dominant genetic disease (which means one parent must be affected). A mutation in one copy of the gene PMP-22 (Peripheral myelin protein 22, 17p11.2) that makes the peripheral myelin protein causes haploinsufficiency, where the activity of the normal gene is insufficient to compensate for the loss of function of the other gene.
Peripheral Myelin Protein 22 gene encodes a 22-kD protein that comprises 2 to 5% of peripheral nervous system myelin, it is located on chromosome locus 17p12
Overlap with Charcot-Marie-Tooth disease type 1A has been found in "Gly94fsX222 (c.281_282insG)", due to point mutations of PMP 22 that occur in a minority of cases of hereditary neuropathy with liability to pressure palsy. The point mutations -missense, nonsense and splice-site have each been alluded to in HNPP.
The Roussy–Lévy syndrome is not a fatal disease and life expectancy is normal. However, due to progressive muscle wasting patients may need supportive orthopaedic equipment or wheelchair assistance.
This condition is linked to the X chromosome.
- Siberian Husky - Night blindness by two to four years old.
- Samoyed - More severe disease than the Husky.