Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Cancer can arise in the form of Malignant peripheral nerve sheath tumor resulting from malignant degeneration of a plexiform neurofibroma.
- Frequency. A plexiform neurofibroma has a lifetime risk of 8–12% of transformation into a malignant tumor.
- Diagnosis. MRI.
- Treatment. Surgery (primary) +/- radiation therapy.
- Mortality. Malignant nerve sheath tumor was the main cause of death (60%) in a study of 1895 patients with NF-1 from France in the time period 1980–2006 indicated excess mortality in NF-1 patients compared to the general population. The cause of death was available for 58 (86.6%) patients. The study found excess mortality occurred among patients aged 10 to 40 years. Significant excess mortality was found in both males and females.
Children with NF-1 can experience social problems, attention problems, social anxiety, depression, withdrawal, thought problems, somatic complaints, learning disabilities and aggressive behavior. Treatments include psychotherapy, antidepressants and cognitive behavioral therapy.
Antineoplastic resistance, synonymous with chemotherapy resistance, is the ability of cancer cells to survive and grow despite different anti-cancer therapies, i.e. their multiple drug resistance. There are two general causes of antineoplastic therapy failure:
Inherent resistance, such as genetic characteristics, giving cancer cells their resistance from the beginning, which is rooted in the concept of cancer cell heterogeneity and acquired resistance after drug exposure.
Antineoplastic resistance, often used interchangeably with chemotherapy resistance, is the multiple drug resistance of neoplastic (cancerous) cells, or the ability of cancer cells to survive and grow despite anti-cancer therapies.
There are two general causes of antineoplastic therapy failure: Inherent genetic characteristics, giving cancer cells their resistance, which is rooted in the concept of cancer cell heterogeneity and acquired resistance after drug exposure. Altered membrane transport, enhanced DNA repair, apoptotic pathway defects, alteration of target molecules, protein and pathway mechanisms, such as enzymatic deactivation.
Since cancer is a genetic disease, two genomic events underlie acquired drug resistance: Genome alterations (e.g. gene amplification and deletion) and epigenetic modifications.
Cancer cells are constantly using a variety of tools, involving genes, proteins and altered pathways, to ensure their survival against antineoplastic drugs.
Factors that contribute to the development of hypopharyngeal cancer include:
- Smoking
- Chewing tobacco
- Heavy alcohol use
- Poor diet
Smoking, like lung cancer, can cause hypopharyngeal cancer because it contains carcinogens that alter the DNA or RNA in a dividing cell. These alterations may change a normal DNA sequence to an oncogene, a gene that causes cancer after exposure to a carcinogen.
Squamous cells, a type of cell that lines hollow organs like the throat, mouth, lungs, and outer layer of skin, are particularly vulnerable when exposed to cigarette smoke.
Chewing tobacco can have the same effects as smoking and is also linked to hypopharyngeal cancer. The chewing tobacco is placed into the mouth, leaving it exposed to enzymes, like amylase, which partly digests the carcinogenic material. Saliva is swallowed, along with the cancer-promoting material, which passes through the hypopharynx on its way to the esophagus.
Heavy alcohol use is linked to Hypopharyngeal Cancer as well. Alcohol damages the lining of the hypopharynx, increasing the amount of chemicals that are allowed to seep into the underlying membranes. Heavy alcohol use is also associated with nutritional deficiencies.
A disease called Plummer-Vinson syndrome, a genetic disorder that causes a long-term iron deficiency, may also lead to Hypopharyngeal Cancer. Other factors like a deficiency in certain vitamins also appear to contribute to this type of cancer.
KWE is inherited in an autosomal dominant manner. This means that the defective gene responsible for the disorder is located on an autosome (chromosome 8 is an autosome), and one copy of the defective gene is sufficient to cause the disorder when inherited from a parent who also has the disorder.KWE can begin as a spontaneous mutation, first appearing in an individual with no previous family history of the disorder. This may be due to a genetic predisposition for the disorder, possibly connected to the Oudtshoorn ancestral line.
DNA damage is considered to be the primary cause of cancer. More than 60,000 new naturally occurring DNA damages arise, on average, per human cell, per day, due to endogenous cellular processes (see article DNA damage (naturally occurring)).
Additional DNA damages can arise from exposure to exogenous agents. As one example of an exogenous carcinogeneic agent, tobacco smoke causes increased DNA damage, and these DNA damages likely cause the increase of lung cancer due to smoking. In other examples, UV light from solar radiation causes DNA damage that is important in melanoma, helicobacter pylori infection produces high levels of reactive oxygen species that damage DNA and contributes to gastric cancer, and the Aspergillus metabolite, aflatoxin, is a DNA damaging agent that is causative in liver cancer.
DNA damages can also be caused by endogenous (naturally occurring) agents. Macrophages and neutrophils in an inflamed colonic epithelium are the source of reactive oxygen species causing the DNA damages that initiate colonic tumorigenesis, and bile acids, at high levels in the colons of humans eating a high fat diet, also cause DNA damage and contribute to colon cancer.
Such exogenous and endogenous sources of DNA damage are indicated in the boxes at the top of the figure in this section. The central role of DNA damage in progression to cancer is indicated at the second level of the figure. The central elements of DNA damage, epigenetic alterations and deficient DNA repair in progression to cancer are shown in red.
A deficiency in DNA repair would cause more DNA damages to accumulate, and increase the risk for cancer. For example, individuals with an inherited impairment in any of 34 DNA repair genes (see article DNA repair-deficiency disorder) are at increased risk of cancer with some defects causing up to 100% lifetime chance of cancer (e.g. p53 mutations). Such germ line mutations are shown in a box at the left of the figure, with an indication of their contribution to DNA repair deficiency. However, such germline mutations (which cause highly penetrant cancer syndromes) are the cause of only about 1 percent of cancers.
The majority of cancers are called non-hereditary or "sporadic cancers". About 30% of sporadic cancers do have some hereditary component that is currently undefined, while the majority, or 70% of sporadic cancers, have no hereditary component.
In sporadic cancers, a deficiency in DNA repair is occasionally due to a mutation in a DNA repair gene, but much more frequently reduced or absent expression of DNA repair genes is due to epigenetic alterations that reduce or silence gene expression. This is indicated in the figure at the 3rd level from the top. For example, for 113 colorectal cancers examined in sequence, only four had a missense mutation in the DNA repair gene MGMT, while the majority had reduced MGMT expression due to methylation of the MGMT promoter region (an epigenetic alteration).
When expression of DNA repair genes is reduced, this causes a DNA repair deficiency. This is shown in the figure at the 4th level from the top. With a DNA repair deficiency, more DNA damages remain in cells at a higher than usual level (5th level from the top in figure), and these excess damages cause increased frequencies of mutation and/or epimutation (6th level from top of figure). Experimentally, mutation rates increase substantially in cells defective in DNA mismatch repair or in Homologous recombinational repair (HRR). Chromosomal rearrangements and aneuploidy also increase in HRR defective cells During repair of DNA double strand breaks, or repair of other DNA damages, incompletely cleared sites of repair can cause epigenetic gene silencing.
The somatic mutations and epigenetic alterations caused by DNA damages and deficiencies in DNA repair accumulate in field defects. Field defects are normal appearing tissues with multiple alterations (discussed in the section below), and are common precursors to development of the disordered and improperly proliferating clone of tissue in a cancer. Such field defects (second level from bottom of figure) may have multiple mutations and epigenetic alterations.
It is impossible to determine the initial cause for most specific cancers. In a few cases, only one cause exists; for example, the virus HHV-8 causes all Kaposi's sarcomas. However, with the help of cancer epidemiology techniques and information, it is possible to produce an estimate of a likely cause in many more situations. For example, lung cancer has several causes, including tobacco use and radon gas. Men who currently smoke tobacco develop lung cancer at a rate 14 times that of men who have never smoked tobacco, so the chance of lung cancer in a current smoker being caused by smoking is about 93%; there is a 7% chance that the smoker's lung cancer was caused by radon gas or some other, non-tobacco cause. These statistical correlations have made it possible for researchers to infer that certain substances or behaviors are carcinogenic. Tobacco smoke causes increased exogenous DNA damage, and these DNA damages are the likely cause of lung cancer due to smoking. Among the more than 5,000 compounds in tobacco smoke, the genotoxic DNA damaging agents that occur both at the highest concentrations and which have the strongest mutagenic effects are acrolein, formaldehyde, acrylonitrile, 1,3-butadiene, acetaldehyde, ethylene oxide and isoprene.
Using molecular biological techniques, it is possible to characterize the mutations, epimutations or chromosomal aberrations within a tumor, and rapid progress is being made in the field of predicting prognosis based on the spectrum of mutations in some cases. For example, up to half of all tumors have a defective p53 gene. This mutation is associated with poor prognosis, since those tumor cells are less likely to go into apoptosis or programmed cell death when damaged by therapy. Telomerase mutations remove additional barriers, extending the number of times a cell can divide. Other mutations enable the tumor to grow new blood vessels to provide more nutrients, or to metastasize, spreading to other parts of the body. However, once a cancer is formed it continues to evolve and to produce sub clones. For example, a renal cancer, sampled in 9 areas, had 40 ubiquitous mutations, 59 mutations shared by some, but not all regions, and 29 "private" mutations only present in one region.
The cells in which all these DNA alterations accumulate are difficult to trace, but two recent lines of evidence suggest that normal stem cells may be the cells of origin in cancers. First, there exists a highly positive correlation (Spearman’s rho = 0.81; P < 3.5 × 10−8) between the risk of developing cancer in a tissue and the number of normal stem cell divisions taking place in that same tissue. The correlation applied to 31 cancer types and extended across five orders of magnitude. This correlation means that if the normal stem cells from a tissue divide once, the cancer risk in that tissue is approximately 1X. If they divide 1,000 times, the cancer risk is 1,000X. And if the normal stem cells from a tissue divide 100,000 times, the cancer risk in that tissue is approximately 100,000X. This strongly suggests that the main reason we have cancer is that our normal stem cells divide, which implies that cancer originates in normal stem cells. Second, statistics show that most human cancers are diagnosed in aged people. A possible explanation is that cancers occur because cells accumulate damage through time. DNA is the only cellular component that can accumulate damage over the entire course of a life, and stem cells are the only cells that can transmit DNA from the zygote to cells late in life. Other cells cannot keep DNA from the beginning of life until a possible cancer occurs. This implies that most cancers arise from normal stem cells.
There is a diverse classification scheme for the various genomic changes that may contribute to the generation of cancer cells. Many of these changes are mutations, or changes in the nucleotide sequence of genomic DNA. There are also many epigenetic changes that alter whether genes are expressed or not expressed. Aneuploidy, the presence of an abnormal number of chromosomes, is one genomic change that is not a mutation, and may involve either gain or loss of one or more chromosomes through errors in mitosis. Large-scale mutations involve the deletion or gain of a portion of a chromosome. Genomic amplification occurs when a cell gains many copies (often 20 or more) of a small chromosomal region, usually containing one or more oncogenes and adjacent genetic material. Translocation occurs when two separate chromosomal regions become abnormally fused, often at a characteristic location. A well-known example of this is the Philadelphia chromosome, or translocation of chromosomes 9 and 22, which occurs in chronic myelogenous leukemia, and results in production of the BCR-abl fusion protein, an oncogenic tyrosine kinase. Small-scale mutations include point mutations, deletions, and insertions, which may occur in the promoter of a gene and affect its expression, or may occur in the gene's coding sequence and alter the function or stability of its protein product. Disruption of a single gene may also result from integration of genomic material from a DNA virus or retrovirus, and such an event may also result in the expression of viral oncogenes in the affected cell and its descendants.
In the developed world, retinoblastoma has one of the best cure rates of all childhood cancers (95-98%), with more than nine out of every ten sufferers surviving into adulthood. In the UK, around 40 to 50 new cases are diagnosed each year.
Good prognosis depends upon early presentation of the child in health facility. Late presentation of the child in hospital is associated with poor prognosis.
Survivors of hereditary retinoblastoma have a higher risk of developing other cancers later in life.
KWE is of unknown cause, as at the present time, no specific mutation of any gene has been established as the cause of the disorder. Research has shown, however, that the gene involved is located on human chromosome 8.
A candidate gene is a gene that is suspected to cause a disease or disorder. In KWE, this gene is known to be located in the area between chromosome 8q22 and 8q23. Within this region, the occurrence of loss of heterozygosity (simultaneous loss of function in both alleles of a gene) has been associated with malignancy, including certain types of breast and lung cancer. During the investigation for a KWE candidate gene in this same region, twelve protein transcripts were evaluated between microsatellite markers D8S550 and D8S1759, which is a critical area shown to be the source of KWE pathogenesis. Among the twelve transcripts identified, one corresponded to the "BLK" gene, which encodes the enzyme "B-lymphoid tyrosine kinase". Four other of these transcripts included a myotubularin ("MTMR8"), a potential human homologue of the mouse "Amac1" enzyme, a transcript similar to the mouse "L-threonine 3-dehydrogenase" gene, and one similar to a human oncogene. The remaining seven transcripts did not resemble any currently known genes. In all, none of the twelve transcripts displayed any evidence of pathogenic involvement with KWE. As a transcriptional map of this critical area is being drawn, based on microsatellite identification, haplotype analysis and other measures; localization of the gene associated with KWE pathogenesis is an ongoing process.
Without treatment, persons with MEN2B die prematurely. Details are lacking, owing to the absence of formal studies, but it is generally assumed that death in the 30s is typical unless prophylactic thyroidectomy and surveillance for pheochromocytoma are performed (see below). The range is quite variable, however: death early in childhood can occur, and it is noteworthy that a few untreated persons have been diagnosed in their 50s. Recently, a larger experience with the disease "suggests that the prognosis in an individual patient may be better than previously considered."
Thyroidectomy is the mainstay of treatment, and should be performed without delay as soon as a diagnosis of MEN2B is made, even if no malignancy is detectable in the thyroid. Without thyroidectomy, almost all patients with MEN2B develop medullary thyroid cancer, in a more aggressive form than MEN 2A. The ideal age for surgery is 4 years old or younger, since cancer may metastasize before age 10.
Pheochromocytoma - a hormone secreting tumor of the adrenal glands - is also present in 50% of cases. Affected individuals are encouraged to get yearly screenings for thyroid and adrenal cancer.
Because prophylactic thyroidectomy improves survival, blood relatives of a person with MEN2B should be evaluated for MEN2B, even if lacking the typical signs and symptoms of the disorder.The mucosal neuromas of this syndrome are asymptomatic and self-limiting, and present no problem requiring treatment. They may, however, be surgically removed for aesthetic purposes or if they are being constantly traumatized.
Chondroid lipomas are deep-seated, firm, yellow tumors that characteristically occur on the legs of women. They exhibit a characteristic translocation t(11;16) with a resulting C11orf95-MKL2 fusion oncogene.
Currently there are no clinically established laboratory investigations available to predict prognosis or therapeutic response.
Tumors in children who develop OMS tend to be more mature, showing favorable histology and absence of n-myc oncogene amplification than similar tumors in children without symptoms of OMS. Involvement of local lymph nodes is common, but these children rarely have distant metastases and their prognosis, in terms of direct morbidity and mortality effects from the tumor, is excellent. The three-year survival rate for children with non-metastatic neuroblastoma and OMS was 100% according to Children’s Cancer Group data (gathered from 675 patients diagnosed between 1980 and 1994); three-year survival in comparable patients with OMS was 77%. Although the symptoms of OMS are typically steroid-responsive and recovery from acute symptoms of OMS can be quite good, children often suffer lifelong neurologic sequelae that impair motor, cognitive, language, and behavioral development.
Most children will experience a relapsing form of OMS, though a minority will have a monophasic course and may be more likely to recover without residual deficits. Viral infection may play a role in the reactivation of disease in some patients who had previously experienced remission, possibly by expanding the memory B cell population. Studies have generally asserted that 70-80% of children with OMS will have long-term neurologic, cognitive, behavioral, developmental, and academic impairment. Since neurologic and developmental difficulties have not been reported as a consequence of neuroblastoma or its treatment, it is thought that these are exclusively due to the immune mechanism underlying OMS.
One study concludes that: ""Patients with OMA and neuroblastoma have excellent survival but a high risk of neurologic sequelae. Favourable disease stage correlates with a higher risk for development of neurologic sequelae. The role of anti-neuronal antibodies in late sequelae of OMA needs further clarification"."
Another study states that: ""Residual behavioral, language, and cognitive problems occurred in the majority"."
MCACL has a much more favorable prognosis than most other forms of adenocarcinoma and most other NSCLC's. Cases have been documented of continued growth of these lesions over a period of 10 years without symptoms or metastasis. The overall mortality rate appears to be somewhere in the vicinity of 18% to 27%, depending on the criteria that are used to define this entity.
Variations in the RET proto-oncogene cause MEN2B. In recent decades no case of MEN2B has been reported that lacks such a variation. The M918T variant alone is responsible for approximately 95% of cases. All DNA variants that cause MEN2B are thought to enhance signaling through the RET protein, which is a receptor molecule found on cell membranes, whose ligands are part of the transforming growth factor beta signaling system.
About half of cases are inherited from a parent as an autosomal dominant trait. The other half appear to be spontaneous mutations, usually arising in the paternal allele, particularly from older fathers. The sex ratio in de novo cases is also uneven: sons are twice as likely to develop MEN 2B as daughters.
Multiple Endocrine Neoplasia type 1 (MEN1) is a rare hereditary endocrine cancer syndrome characterized primarily by tumors of the parathyroid glands (95% of cases), endocrine gastroenteropancreatic (GEP) tract (30-80% of cases), and anterior pituitary (15-90% of cases). Other endocrine and non-endocrine neoplasms including adrenocortical and thyroid tumors, visceral and cutaneous lipomas, meningiomas, facial angiofibromas and collagenomas, and thymic, gastric, and bronchial carcinoids also occur. The phenotype of MEN1 is broad, and over 20 different combinations of endocrine and non-endocrine manifestations have been described. MEN1 should be suspected in patients with an endocrinopathy of two of the three characteristic affected organs, or with an endocrinopathy of one of these organs plus a first-degree relative affected by MEN1 syndrome.
MEN1 patients usually have a family history of MEN1. Inheritance is autosomal dominant; any affected parent has a 50% chance to transmit the disease to his or her progeny. MEN1 gene mutations can be identified in 70-95% of MEN1 patients.
Many endocrine tumors in MEN1 are benign and cause symptoms by overproduction of hormones or local mass effects, while other MEN1 tumors are associated with an elevated risk for malignancy. About one third of patients affected with MEN1 will die early from an MEN1-related cancer or associated malignancy. Entero-pancreatic gastrinomas and thymic and bronchial carcinoids are the leading cause of morbidity and mortality. Consequently, the average age of death in untreated individuals with MEN1 is significantly lower (55.4 years for men and 46.8 years for women) than that of the general population.
Cancer prevention is defined as active measures to decrease cancer risk. The vast majority of cancer cases are due to environmental risk factors. Many of these environmental factors are controllable lifestyle choices. Thus, cancer is generally preventable. Between 70% and 90% of common cancers are due to environmental factors and therefore potentially preventable.
Greater than 30% of cancer deaths could be prevented by avoiding risk factors including: tobacco, excess weight/obesity, poor diet, physical inactivity, alcohol, sexually transmitted infections and air pollution. Not all environmental causes are controllable, such as naturally occurring background radiation and cancers caused through hereditary genetic disorders and thus are not preventable via personal behavior.
Costello syndrome, also called faciocutaneoskeletal syndrome or FCS syndrome, is a rare genetic disorder that affects many parts of the body. It is characterized by delayed development and delayed mental progression, distinctive facial features, unusually flexible joints, and loose folds of extra skin, especially on the hands and feet. Heart abnormalities are common, including a very fast heartbeat (tachycardia), structural heart defects, and overgrowth of the heart muscle (hypertrophic cardiomyopathy). Infants with Costello syndrome may be large at birth, but grow more slowly than other children and have difficulty feeding. Later in life, people with this condition have relatively short stature and many have reduced levels of growth hormones. It is a RASopathy.
Beginning in early childhood, people with Costello syndrome have an increased risk of developing certain cancerous and noncancerous tumors. Small growths called papillomas are the most common noncancerous tumors seen with this condition. They usually develop around the nose and mouth or near the anus. The most frequent cancerous tumor associated with Costello syndrome is a soft tissue tumor called a rhabdomyosarcoma. Other cancers also have been reported in children and adolescents with this disorder, including a tumor that arises in developing nerve cells (neuroblastoma) and a form of bladder cancer (transitional cell carcinoma).
Costello Syndrome was discovered by Dr Jack Costello, a New Zealand Paediatrician in 1977. He is credited with first reporting the syndrome in the Australian Paediatric Journal, Volume 13, No.2 in 1977.
Accurate incidence statistics on MCACL are unavailable. It is a very rare tumor, with only a few dozen cases reported in the literature to date.
In the few cases described in the literature to date, the male-to-female ratio is approximately unity, and right lung lesions occurred twice as commonly as left lung lesions. Approximately 2/3 of cases have been associated with tobacco smoking. Cases have been reported in patients as young as 29.
Wilms tumour affects approximately one person per 10,000 worldwide before the age of 15 years. People of African descent may have slightly higher rates of Wilms tumor. The peak age of Wilms tumour is 3 to 4 years and most cases occur before the age of 10 years.
A genetic predisposition to Wilms Tumor in individuals with aniridia has been established, due to deletions in the p13 band on chromosome 11.
Some therapies for other forms of cancer increase the lifetime risk of endometrial cancer, which is a baseline 2–3%. Tamoxifen, a drug used to treat estrogen-positive breast cancers, has been associated with endometrial cancer in approximately 0.1% of users, particularly older women, but the benefits for survival from tamoxifen generally outweigh the risk of endometrial cancer. A one to two-year course of tamoxifen approximately doubles the risk of endometrial cancer, and a five-year course of therapy quadruples that risk. Raloxifene, a similar drug, did not raise the risk of endometrial cancer. Previously having ovarian cancer is a risk factor for endometrial cancer, as is having had previous radiotherapy to the pelvis. Specifically, ovarian granulosa cell tumors and thecomas are tumors associated with endometrial cancer.
Low immune function has also been implicated in endometrial cancer. High blood pressure is also a risk factor, but this may be because of its association with obesity. Sitting regularly for prolonged periods is associated with higher mortality from endometrial cancer. The risk is not negated by regular exercise, though it is lowered.
A recommend surveillance program for Multiple Endocrine Neoplasia Type 1 has been suggested by the International Guidelines for Diagnosis and Therapy of MEN syndromes group.
Retinoblastoma presents with cumulative lifetime incidence rate of 1 case of retinoblastoma per 18000 to 30000 live births worldwide. A higher incidence is noted in developing countries, this has been attributed to lower socioeconomic status and the presence of human papilloma virus sequences in the retinoblastoma tissue.
Almost 80% of children with retinoblastoma are diagnosed before 3 years of age and diagnosis in children above 6 years of age is extremely rare. In the UK, bilateral cases usually present within 14 to 16 months, while diagnosis of unilateral cases peaks between 24 and 30 months.
In children, most cases are associated with neuroblastoma and most of the others are suspected to be associated with a low-grade neuroblastoma that spontaneously regressed before detection. In adults, most cases are associated with breast carcinoma or small-cell lung carcinoma. It is one of the few paraneoplastic (meaning 'indirectly caused by cancer') syndromes that occurs in both children and adults, although the mechanism of immune dysfunction underlying the adult syndrome is probably quite different.
It is hypothesized that a viral infection (perhaps St. Louis encephalitis, Epstein-Barr, Coxsackie B, enterovirus, or just a flu) causes the remaining cases, though a direct connection has not been proven, or in some cases Lyme disease.
OMS is not generally considered an infectious disease. OMS is not passed on genetically.
Some hormones play a role in the development of cancer by promoting cell proliferation. Insulin-like growth factors and their binding proteins play a key role in cancer cell proliferation, differentiation and apoptosis, suggesting possible involvement in carcinogenesis.
Hormones are important agents in sex-related cancers, such as cancer of the breast, endometrium, prostate, ovary and testis and also of thyroid cancer and bone cancer. For example, the daughters of women who have breast cancer have significantly higher levels of estrogen and progesterone than the daughters of women without breast cancer. These higher hormone levels may explain their higher risk of breast cancer, even in the absence of a breast-cancer gene. Similarly, men of African ancestry have significantly higher levels of testosterone than men of European ancestry and have a correspondingly higher level of prostate cancer. Men of Asian ancestry, with the lowest levels of testosterone-activating androstanediol glucuronide, have the lowest levels of prostate cancer.
Other factors are relevant: obese people have higher levels of some hormones associated with cancer and a higher rate of those cancers. Women who take hormone replacement therapy have a higher risk of developing cancers associated with those hormones. On the other hand, people who exercise far more than average have lower levels of these hormones and lower risk of cancer. Osteosarcoma may be promoted by growth hormones. Some treatments and prevention approaches leverage this cause by artificially reducing hormone levels and thus discouraging hormone-sensitive cancers.