Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This accounts for around 10-15% of all cases of anovulation. The ovaries can stop working in about 5% of cases. This may be because the ovaries do not contain eggs. However, a complete blockage of the ovaries is rarely a cause of infertility. Blocked ovaries can start functioning again without a clear medical explanation. In some cases, the egg may have matured properly, but the follicle may have failed to burst (or the follicle may have burst without releasing the egg). This is called luteinised unruptured follicle syndrome (LUFS). Physical damage to the ovaries, or ovaries with multiple cysts, may affect their ability to function. This is called ovarian . Patients who are suffering from Stein-Leventhal syndrome (also referred to as polycystic ovary syndrome, or PCOS) can also suffer from anovulation. Up to 90% of cases of anovulation are caused by PCOS; this syndrome is usually hereditary.
Weight loss or anorexia can also cause hormonal imbalance, leading to irregular ovulation (dysovulation). It is possible that this mechanism evolved to protect the mother’s health. A pregnancy where the mother is weak could pose a risk to the baby’s and mother’s health. On the other hand, excess weight can also create ovarian dysfunctions. Dr Barbieri of Harvard Medical School has indicated that cases of anovulation are quite frequent in women with a BMI (body mass index) over 27 /. Unfortunately, not only does excess weight have a negative impact on ovulation itself, but also on treatment efficacy and outcomes of ART (assisted reproductive technique).
For most women, alteration of menstrual periods is the principal indication of chronic anovulation. Ovulatory menstrual periods tend to be regular and predictable in terms of cycle length, duration and heaviness of bleeding, and other symptoms. Ovulatory periods are often accompanied by midcycle symptoms such as mittelschmerz or premenstrual symptoms. In contrast, anovulation usually manifests itself as irregularity of menstrual periods, that is, unpredictable variability of intervals, duration, or bleeding. Anovulation can also cause cessation of periods (secondary amenorrhea) or excessive bleeding (dysfunctional uterine bleeding). Mittelschmerz and premenstrual symptoms tend to be absent or reduced when a woman is anovulatory.
Oligomenorrhea can be a result of prolactinomas (adenomas of the anterior pituitary). It may be caused by thyrotoxicosis, hormonal changes in perimenopause, Prader–Willi syndrome, and Graves disease.
"Endurance exercises such as running or swimming can affect the reproductive physiology of women athletes. Female runners, swimmers and ballet dancers menstruate infrequently in comparison to nonatheletic women of comparable age or not at all (amenorrhea). The degree of menstrual abnormality is directly proportional to the intensity of the exercise. For example, Malina et al., (1978) have shown menstrual irregularity is more common, and more severe among tennis players than among golfers" (modified by a student paper written by A. Lord)
Breastfeeding has been linked to irregularity of menstrual cycles due to hormones that delay ovulation.
Women with polycystic ovary syndrome (PCOS) are also likely to suffer from oligomenorrhea. PCOS is a condition in which excessive androgens (male sex hormones) are released by the ovaries. Women with PCOS show menstrual irregularities that range from oligomenorrhea and amenorrhea, to very heavy, irregular periods. The condition affects about 6% of premenopausal women.
Eating disorders can result in oligomenorrhea. Although menstrual disorders are most strongly associated with Anorexia nervosa, Bulimia nervosa may also result in oligomenorrhea or amenorrhea. There is some controversy regarding the mechanism for the menstrual dysregulation, since amenorrhea may sometimes precede substantial weight loss in some anorexics. Some researchers hypothesize that some as-yet unrecognized neuroendocrine phenomenon may be involved; the menstrual irregularities may be related to the biological undergirding of the disorders, rather than a result of nutritional deficiencies.
The prevalence of PCOS depends on the choice of diagnostic criteria. The World Health Organization estimates that it affects 116 million women worldwide as of 2010 (3.4% of women). One community-based prevalence study using the Rotterdam criteria found that about 18% of women had PCOS, and that 70% of them were previously undiagnosed.
Ultrasonographic findings of polycystic ovaries are found in 8–25% of normal women. 14% women on oral contraceptives are found to have polycystic ovaries. Ovarian cysts are also a common side effect of intrauterine devices (IUDs).
A diagnosis of PCOS suggests an increased risk of the following:
- Endometrial hyperplasia and endometrial cancer (cancer of the uterine lining) are possible, due to overaccumulation of uterine lining, and also lack of progesterone resulting in prolonged stimulation of uterine cells by estrogen. It is not clear whether this risk is directly due to the syndrome or from the associated obesity, hyperinsulinemia, and hyperandrogenism.
- Insulin resistance/Type II diabetes. A review published in 2010 concluded that women with PCOS have an elevated prevalence of insulin resistance and type II diabetes, even when controlling for body mass index (BMI). PCOS also makes a woman, particularly if obese, prone to gestational diabetes.
- High blood pressure, in particular if obese or during pregnancy
- Depression and anxiety
- Dyslipidemia – disorders of lipid metabolism — cholesterol and triglycerides. Women with PCOS show a decreased removal of atherosclerosis-inducing remnants, seemingly independent of insulin resistance/Type II diabetes.
- Cardiovascular disease, with a meta-analysis estimating a 2-fold risk of arterial disease for women with PCOS relative to women without PCOS, independent of BMI.
- Strokes
- Weight gain
- Miscarriage
- Sleep apnea, particularly if obesity is present
- Non-alcoholic fatty liver disease, again particularly if obesity is present
- Acanthosis nigricans (patches of darkened skin under the arms, in the groin area, on the back of the neck)
- Autoimmune thyroiditis
Early diagnosis and treatment may reduce the risk of some of these, such as type 2 diabetes and heart disease.
The risk of ovarian cancer and breast cancer is not significantly increased overall.
Dysmenorrhea (or dysmenorrhoea), cramps or painful menstruation, involves menstrual periods that are accompanied by either sharp, intermittent pain or dull, aching pain, usually in the pelvis or lower abdomen.
"Polymenorrhea" is the medical term for cycles with intervals of 21 days or fewer.
"Irregular menstruation" is where there is variation in menstrual cycle length of more than approximately eight days for a woman. The term "metrorrhagia" is often used for irregular menstruation that occurs between the expected menstrual periods.
"Oligomenorrhea" is the medical term for infrequent, often light menstrual periods (intervals exceeding 35 days).
"Amenorrhea" is the absence of a menstrual period in a woman of reproductive age. Physiologic states of amenorrhoea are seen during pregnancy and lactation (breastfeeding). Outside of the reproductive years there is absence of menses during childhood and after menopause.
Oligomenorrhea (or oligomenorrhoea) is infrequent (or, in occasional usage, very light) menstruation. More strictly, it is menstrual periods occurring at intervals of greater than 35 days, with only four to nine periods in a year. Menstrual periods should have been regularly established before the development of infrequent flow. The duration of such events may vary.
Irregular cycles or irregular periods is an abnormal variation in length of menstrual cycles. A female usually experiences cycle length variations of up to eight days between the shortest and longest cycle lengths. Lengths ranging between eight and 20 days are considered moderately irregular. Variation of 21 days or more is considered very irregular.
Alternatively, a single menstruation period may be defined as irregular if it is shorter than 21 days or longer than 36 days. If they are regularly shorter than 21 days or longer than 36 (or 35) days, the condition is termed polymenorrhea or oligomenorrhea, respectively.
Irregular menstruation is a menstrual disorder whose manifestations include irregular cycle lengths as well as metrorrhagia (vaginal bleeding between expected periods).
In a study of 1,034 symptomatic adults, Sheehan syndrome was found to be the sixth most frequent etiology of growth hormone deficiency, being responsible for 3.1% of cases (versus 53.9% due to a pituitary tumor).
In the developed world it is a rare complication of pregnancy, usually occurring after excessive blood loss. The presence of disseminated intravascular coagulation (i.e., in amniotic fluid embolism or HELLP syndrome) also appears to be a factor in its development.
Patients with Leydig cell hypoplasia may be treated with hormone replacement therapy (i.e., with androgens), which will result in normal sexual development and the resolution of most symptoms. In the case of 46,XY (genetically "male") individuals who are phenotypically female and/or identify as the female gender, estrogens should be given instead. Surgical correction of the genitals in 46,XY males may be required, and, if necessary, an orchidopexy (relocation of the undescended testes to the scrotum) may be performed as well.
The incidence varies geographically. In the United States, congenital adrenal hyperplasia is particularly common in Native Americans and Yupik Eskimos (incidence ). Among American Caucasians, the incidence is approximately ).
Leydig cell hypoplasia is caused by genetic mutations in "LHCGR", a gene which encodes the LH/hCG receptor. LH normally acts through the LH/hCG receptor to stimulate the growth of Leydig cells in the testicles and the production of androgens such as testosterone and dihydrotestosterone (DHT) by these cells. In Leydig cell hypoplasia however, there is a reduced capacity for the LH/hCG receptor to respond to LH. This results in hypoplasia or absence of Leydig cells, testicular atrophy, and lower than normal androgen levels. In the most severe form of the condition in which there is a complete lack of response of the Leydig cells to LH, androgen production by the testicles is virtually negligible and secondary sexual characteristics entirely fail to develop at puberty.
Cortisol inhibition, and as a result, excess androgen release can lead to a variety of symptoms. Other symptoms come about as a result of increased levels of circulating androgen. Androgen is a steroid hormone, generally associated with development of male sex organs and secondary male sex characteristics The symptoms associated with Cortisone Reductase Deficiency are often linked with Polycystic Ovary Syndrome (PCOS) in females. The symptoms of PCOS include excessive hair growth, oligomenorrhea, amenorrhea, and infertility. In men, cortisone reductase deficiency results in premature pseudopuberty, or sexual development before the age of nine.
Treatment of all forms of CAH may include any of:
1. supplying enough glucocorticoid to reduce hyperplasia and overproduction of androgens or mineralocorticoids
2. providing replacement mineralocorticoid and extra salt if the person is deficient
3. providing replacement testosterone or estrogen at puberty if the person is deficient
4. additional treatments to optimize growth by delaying puberty or delaying bone maturation
All of these management issues are discussed in more detail in congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
Dexamethasone is used as an off-label early pre-natal treatment for the symptoms of CAH in female fetuses, but it does not treat the underlying congenital disorder. A 2007 Swedish clinical trial found that treatment may cause cognitive and behavioural defects, but the small number of test subjects means the study cannot be considered definitive. A 2012 American study found no negative short term outcomes, but "lower cognitive processing in CAH girls and women with long-term DEX exposure." Administration of pre-natal dexamethasone has been the subject of controversy over issues of informed consent and because treatment must predate a clinical diagnosis of CAH in the female fetus, especially because in utero dexamethasone may cause metabolic problems that are not evident until later in life; Swedish clinics ceased recruitment for research in 2010.
The treatment has also raised concerns in LGBT and bioethics communities following publication of an essay posted to the forum of the Hastings Center, and research in the Journal of Bioethical Inquiry, which found that pre-natal treatment of female fetuses was suggested to prevent those fetuses from becoming lesbians after birth, may make them more likely to engage in "traditionally" female-identified behaviour and careers, and more interested in bearing and raising children. Citing a known attempt by a man using his knowledge of the fraternal birth order effect to avoid having a homosexual son by using a surrogate, the essayists (Professor Alice Dreger of Northwestern University's Feinberg School of Medicine, Professor Ellen Feder of American University and attorney Anne Tamar-Mattis) suggest that pre-natal "dex" treatments constitute the first known attempt to use "in utero" protocols to reduce the incidence of homosexuality and bisexuality in humans. Research on the use of prenatal hormone treatments to prevent homosexuality stretches back to the early 1990s or earlier.
Since CAH is a recessive gene, both the mother and father must be recessive carriers of CAH for a child to have CAH. Due to advances in modern medicine, those couples with the recessive CAH genes have an option to prevent CAH in their offspring through preimplantation genetic diagnosis (PGD). In PGD, the egg is fertilized outside the women's body in a petri dish (IVF). On the 3rd day, when the embryo has developed from one cell to about 4 to 6 cells, one of those cells is removed from the embryo without harming the embryo. The embryo continues to grow until day 5 when it is either frozen or implanted into the mother. Meanwhile, the removed cell is analyzed to determine if the embryo has CAH. If the embryo is determined to have CAH, the parents may make a decision as to whether they wish to have it implanted in the mother or not.
Meta-analysis of the studies supporting the use of dexamethasone on CAH at-risk fetuses found "less than one half of one percent of published 'studies' of this intervention were regarded as being of high enough quality to provide meaningful data for a meta-analysis. Even these four studies were of low quality" ... "in ways so slipshod as to breach professional standards of medical ethics" and "there were no data on long-term follow-up of physical and metabolic outcomes in children exposed to dexamethasone".
Cortisone reductase deficiency is caused by dysregulation of the 11β-hydroxysteroid dehydrogenase type 1 enzyme (11β-HSD1), otherwise known as cortisone reductase, a bi-directional enzyme, which catalyzes the interconversion of cortisone to cortisol in the presence of NADH as a co-factor. If levels of NADH are low, the enzyme catalyses the reverse reaction, from cortisol to cortisone, using NAD+ as a co-factor.
Cortisol is a glucocorticoid that plays a variety of roles in many different biochemical pathways, including, but not limited to: gluconeogenesis, suppressing immune system responses and carbohydrate metabolism.
One of the symptoms of cortisone reductase deficiency is hyperandrogenism, resulting from activation of the Hypothalamic–pituitary–adrenal axis.
The deficiency has been known to exhibit symptoms of other disorders such as Polycystic Ovary Syndrome in women. Cortisone Reductase Deficiency alone has been reported in fewer than ten cases in total, all but one case were women. Elevated activity of 11β-HSD1 can lead to obesity or Type II Diabetes, because of the role of cortisol in carbohydrate metabolism and gluconeogenesis.
Iatrogenic Cushing's syndrome (caused by treatment with corticosteroids) is the most common form of Cushing's syndrome. Cushing's disease is rare; a Danish study found an incidence of less than one case per million people per year. However, asymptomatic microadenomas (less than 10 mm in size) of the pituitary are found in about one in six individuals.
People with Cushing's syndrome have increased morbidity and mortality as compared to the general population. The most common cause of mortality in Cushing's syndrome is cardiovascular events. People with Cushing's syndrome have nearly 4 times increased cardiovascular mortality as compared to the general population.
The most common cause of Cushing's syndrome is the taking of glucocorticoids prescribed by a health care practitioner to treat other diseases (called iatrogenic Cushing's syndrome). This can be an effect of corticosteroid treatment of a variety of disorders such as asthma and rheumatoid arthritis, or in immunosuppression after an organ transplant. Administration of synthetic ACTH is also possible, but ACTH is less often prescribed due to cost and lesser utility. Although rare, Cushing's syndrome can also be due to the use of medroxyprogesterone acetate. In this form of Cushing's, the adrenal glands atrophy due to lack of stimulation by ACTH, since glucocorticoids downregulate production of ACTH. Cushing's syndrome in childhood usually results from use of glucocorticoid medication.
Endogenous Cushing's syndrome results from some derangement of the body's own system of secreting cortisol. Normally, ACTH is released from the pituitary gland when necessary to stimulate the release of cortisol from the adrenal glands.
- In pituitary Cushing's, a benign pituitary adenoma secretes ACTH. This is also known as Cushing's disease and is responsible for 70% of endogenous Cushing's syndrome.
- In adrenal Cushing's, excess cortisol is produced by adrenal gland tumors, hyperplastic adrenal glands, or adrenal glands with nodular adrenal hyperplasia.
- Tumors outside the normal pituitary-adrenal system can produce ACTH (occasionally with CRH) that affects the adrenal glands. This etiology is called ectopic or paraneoplastic Cushing's disease and is seen in diseases such as small cell lung cancer.
- Finally, rare cases of CRH-secreting tumors (without ACTH secretion) have been reported, which stimulates pituitary ACTH production.
Hyperprolactinemic SAHA syndrome is a cutaneous condition characterized by lateral hairiness, oligomenorrhea, and sometimes acne, seborrhea, FAGA I, and even galactorrhea.
The majority of Leydig cell tumors are found in males, usually at 5–10 years of age or in middle adulthood (30–60 years). Children typically present with precocious puberty. Due to excess testosterone secreted by the tumour, one-third of female patients present with a recent history of progressive masculinization. Masculinization is preceded by anovulation, oligomenorrhea, amenorrhea and "defeminization". Additional signs include acne and hirsutism, voice deepening, clitoromegaly, temporal hair recession, and an increase in musculature. Serum testosterone level is high.
In men testicular swelling is the most common presenting feature. Other symptoms depend on their age and the type of tumour. If it is secreting androgens the tumour is usually asymptomatic, but can cause precocious puberty in pre-pubertal boys. If the tumour secretes oestrogens it can cause feminisation in young boys. In adults, this causes a number of problems including gynaecomastia, erectile dysfunction, infertility, feminine hair distribution, gonadogenital atrophy, and a loss of libido.
The usual chemotherapy regimen has limited efficacy in tumours of this type, although Imatinib has shown some promise. There is no current role for radiotherapy.
The usual treatment is surgery. The surgery for females usually is a fertility-sparing unilateral salpingo-oophorectomy. For malignant tumours, the surgery may be radical and usually is followed by adjuvant chemotherapy, sometimes by radiation therapy. In all cases, initial treatment is followed by surveillance. Because in many cases Leydig cell tumour does not produce elevated tumour markers, the focus of surveillance is on repeated physical examination and imaging.
In males, a radical inguinal orchiectomy is typically performed. However, testes-sparing surgery can be used to maintain fertility in children and young adults. This approach involves an inguinal or scrotal incision and ultrasound guidance if the tumour is non-palpable. This can be done because the tumour is typically unifocal, not associated with precancerous lesions, and is unlikely to recur.
The prognosis is generally good as the tumour tends to grow slowly and usually is benign: 10% are malignant. For malignant tumours with undifferentiated histology, prognosis is poor.