Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Tobacco smoking is the main known contributor to urinary bladder cancer; in most populations, smoking is associated with over half of bladder cancer cases in men and one-third of cases among women, however these proportions have reduced over recent years since there are fewer smokers in Europe and North America. There is an almost linear relationship between smoking duration (in years), pack years and bladder cancer risk. A risk plateau at smoking about 15 cigarettes a day can be observed (meaning that those who smoke 15 cigarettes a day are approximately at the same risk as those smoking 30 cigarettes a day). Quitting smoking reduces the risk, however former smokers will most likely always be at a higher risk of bladder cancer compared to never smokers. Passive smoking has not been proven to be involved.
Thirty percent of bladder tumors probably result from occupational exposure in the workplace to carcinogens such as benzidine. 2-Naphthylamine, which is found in cigarette smoke, has also been shown to increase bladder cancer risk. Occupations at risk are bus drivers, rubber workers, motor mechanics, leather (including shoe) workers, blacksmiths, machine setters, and mechanics. Hairdressers are thought to be at risk as well because of their frequent exposure to permanent hair dyes.
In addition to these major risk factors there are also numerous other modifiable factors that are less strongly (i.e. 10–20% risk increase) associated with bladder cancer, for example, obesity. Although these could be considered as minor effects, risk reduction in the general population could still be achieved by reducing the prevalence of a number of smaller risk factor together.
It has been suggested that mutations at HRAS, KRAS2, RB1, and FGFR3 may be associated in some cases.
While some dietary factors have been associated with prostate cancer the evidence is still tentative. Evidence supports little role for dietary fruits and vegetables in prostate cancer occurrence. Red meat and processed meat also appear to have little effect in human studies. Higher meat consumption has been associated with a higher risk in some studies.
Lower blood levels of vitamin D may increase the risk of developing prostate cancer.
Folic acid supplements have no effect on the risk of developing prostate cancer.
Compared to other breeds of dog, Scottish terriers have a much increased risk of developing transitional cell carcinoma.
There are also some links between prostate cancer and medications, medical procedures, and medical conditions. Use of the cholesterol-lowering drugs known as the statins may also decrease prostate cancer risk.
Infection or inflammation of the prostate (prostatitis) may increase the chance for prostate cancer while another study shows infection may help prevent prostate cancer by increasing blood flow to the area. In particular, infection with the sexually transmitted infections chlamydia, gonorrhea, or syphilis seems to increase risk. Finally, obesity and elevated blood levels of testosterone may increase the risk for prostate cancer. There is an association between vasectomy and prostate cancer; however, more research is needed to determine if this is a causative relationship.
Research released in May 2007, found that US war veterans who had been exposed to Agent Orange had a 48% increased risk of prostate cancer recurrence following surgery.
A 2008 study commissioned by the World Health Organisation concluded that "specific fruit and vegetables may act to reduce the risk of bladder cancer." Fruit and yellow-orange vegetables, particularly carrots and those containing selenium, are probably associated with a moderately reduced risk of bladder cancer. Citrus fruits and cruciferous vegetables were also identified as having a possibly protective effect. However an analysis of 47,909 men in the Health Professionals Follow-Up Study showed little correlation between cancer reduction and high consumption of fruits and vegetables overall, or yellow or green leafy vegetables specifically, compared to the statistically significant reduction among those men who consumed large amounts of cruciferous vegetables.
In a 10-year study involving almost 49,000 men, researchers found that men who drank at least 1,44 L of water (around 6 cups) per day had a significantly reduced incidence of bladder cancer when compared with men who drank less. It was also found that: "the risk of bladder cancer decreased by 7% for every 240 mL of fluid added". The authors proposed that bladder cancer might partly be caused by the bladder directly contacting carcinogens that are excreted in urine, although this has not yet been confirmed in other studies.
Triple-negative breast cancer accounts for approximately 15%-25% of all breast cancer cases. The overall proportion of TNBC is very similar in all age groups. Younger women have a higher rate of basal or BRCA related TNBC while older women have a higher proportion of apocrine, normal-like and rare subtypes including neuroendocrine TNBC.
Among younger women, African American and Hispanic women have a higher risk of TNBC, with African Americans facing worse prognosis than other ethnic groups.
In 2009, a case-control study of 187 triple-negative breast cancer patients described a 2.5 increased risk for triple-negative breast cancer in women who used oral contraceptives (OCs) for more than one year compared to women who used OCs for less than one year or never. The increased risk for triple-negative breast cancer was 4.2 among women 40 years of age or younger who used OCs for more than one year, while there was no increased risk for women between the ages of 41 and 45. Also, as duration of OC use increased, triple-negative breast cancer risk increased.
Cancer prevention is defined as active measures to decrease cancer risk. The vast majority of cancer cases are due to environmental risk factors. Many of these environmental factors are controllable lifestyle choices. Thus, cancer is generally preventable. Between 70% and 90% of common cancers are due to environmental factors and therefore potentially preventable.
Greater than 30% of cancer deaths could be prevented by avoiding risk factors including: tobacco, excess weight/obesity, poor diet, physical inactivity, alcohol, sexually transmitted infections and air pollution. Not all environmental causes are controllable, such as naturally occurring background radiation and cancers caused through hereditary genetic disorders and thus are not preventable via personal behavior.
Up to 10% of invasive cancers are related to radiation exposure, including both ionizing radiation and non-ionizing ultraviolet radiation. Additionally, the majority of non-invasive cancers are non-melanoma skin cancers caused by non-ionizing ultraviolet radiation, mostly from sunlight. Sources of ionizing radiation include medical imaging and radon gas.
Ionizing radiation is not a particularly strong mutagen. Residential exposure to radon gas, for example, has similar cancer risks as passive smoking. Radiation is a more potent source of cancer when combined with other cancer-causing agents, such as radon plus tobacco smoke. Radiation can cause cancer in most parts of the body, in all animals and at any age. Children and adolescents are twice as likely to develop radiation-induced leukemia as adults; radiation exposure before birth has ten times the effect.
Medical use of ionizing radiation is a small but growing source of radiation-induced cancers. Ionizing radiation may be used to treat other cancers, but this may, in some cases, induce a second form of cancer. It is also used in some kinds of medical imaging.
Prolonged exposure to ultraviolet radiation from the sun can lead to melanoma and other skin malignancies. Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave UVB, as the cause of most non-melanoma skin cancers, which are the most common forms of cancer in the world.
Non-ionizing radio frequency radiation from mobile phones, electric power transmission and other similar sources have been described as a possible carcinogen by the World Health Organization's International Agency for Research on Cancer. However, studies have not found a consistent link between mobile phone radiation and cancer risk.
Prognosis can range considerably for patients, depending where on the scale they have been staged. Generally speaking, the earlier the cancer is diagnosed, the better the prognosis. The overall 5-year survival rate for all stages of penile cancer is about 50%.
While cancer is generally considered a disease of old age, children can also develop cancer. In contrast to adults, carcinomas are exceptionally rare in children..
The two biggest risk factors for ovarian carcinoma are age and family history.
Penile cancer is a rare cancer in developed nations with annual incidence varying from 0.3 to 1 per 100,000 per year accounting for around 0.4–0.6% of all malignancies. The annual incidence is approximately 1 in 100,000 men in the United States, 1 in 250,000 in Australia, and 0.82 per 100,000 in Denmark. In the United Kingdom, fewer than 500 men are diagnosed with penile cancer every year.
However, in the developing world penile cancer is much more common. For instance, in Paraguay, Uruguay, Uganda and Brazil the incidence is 4.2, 4.4, 2.8 and 1.5–3.7 per 100,000, respectively. In some South American countries, Africa, and Asia, this cancer type constitutes up to 10% of malignant diseases in men.
The lifetime risk has been estimated as 1 in 1,437 in the United States and 1 in 1,694 in Denmark.
Human papillomavirus infection (HPV) has been associated with SCC of the oropharynx, lung, fingers and anogenital region.
It has been observed that HPV18 is the most prevalent type in Small cell cervical cancer.
Like other types of cervical cancer it seems to be associated with high-risk (e.g. 16, 18, 31) HPV Infection.
Clear-cell adenocarcinoma is a type of adenocarcinoma that shows clear cells.
Types include:
- Clear-cell adenocarcinoma of the vagina
- Clear-cell ovarian carcinoma
- Uterine clear-cell carcinoma
- Clear-cell adenocarcinoma of the lung (which is a type of Clear-cell carcinoma of the lung)
See also:
- Clear-cell squamous cell carcinoma of the lung
When associated with the lung, it is typically a centrally located large cell cancer (non-small cell lung cancer or NSCLC). It often has a paraneoplastic syndrome causing ectopic production of parathyroid hormone-related protein (PTHrP), resulting in hypercalcemia, however paraneoplastic syndrome is more commonly associated with small cell lung cancer.
It is primarily due to smoking.
This type of cancer occurs most often in Caucasians between 60 and 80 years of age, and its rate of incidence is about twice as high in males as in females. There are roughly 1,500 new cases of MCC diagnosed each year in the United States, as compared to around 60,000 new cases of melanoma and over 1 million new cases of nonmelanoma skin cancer. MCC is sometimes mistaken for other histological types of cancer, including basal cell carcinoma, squamous cell carcinoma, malignant melanoma, lymphoma, and small cell carcinoma, or as a benign cyst. Researchers believe that exposure to sunlight or ultraviolet light (such as in a tanning bed) may increase the risk of developing this disease. Similar to melanoma, the incidence of MCC in the US is increasing rapidly.
Immunosuppression can profoundly increase the odds of developing Merkel-cell carcinoma. Merkel-cell carcinoma occurs 30 times more often in people with chronic lymphocytic leukemia and 13.4 times more often in people with advanced HIV as compared to the general population; solid organ transplant recipients have a 10-fold increased risk compared to the general population.
Cervical cancers can recur with symptoms of vaginal bleeding and/or discharge, pelvic pain, pain in the back and legs, leg swelling (edema), chronic cough and weight loss. It can recur in the vagina, pelvis, lymph nodes, lung, or liver. “If radiation was not given previously, recurrences that are confined to the pelvis may be treated with external beam radiation with chemotherapy and intracavitary or interstitial radiation therapy. If radiation therapy was already given, the only option is the removal of the vagina, uterus, and the bladder and/or rectum with the creation of an artificial bladder-a pelvic exenteration. The five-year survival rate after a pelvic exenteration is about 50 percent.” (womenscancercenter.com) Chemotherapy is useful in women with recurrent tumors which cannot be removed surgically or in women with metastatic diseases. Chances of survival of chemotherapy, if diagnosed in early stage, is grater than 50%.
Most people with cancer of unknown primary origin have widely disseminated and incurable disease, although a few can be cured through treatment. With treatment, typical survival with CUP ranges from 6 to 16 months. Survival rates are lower in cases with visceral metastatic disease, ranging from 6 to 9 months. Survival rates are higher when the cancer is more limited to lymph nodes, pleura, or peritoneal metastasis, which ranges from 14 to 16 months. Long-term prognosis is somewhat better if a particular source of cancer is strongly suggested by clinical evidence.
Alcohol is a risk factor for breast cancer in women.
A woman drinking an average of two units of alcohol per day has an 8% higher risk of developing breast cancer than a woman who drinks an average of one unit of alcohol per day. A study concluded that for every additional drink regularly consumed per day, the incidence of breast cancer increases by 11 per 1000. Approximately 6% (between 3.2% and 8.8%) of breast cancers reported in the UK each year could be prevented if drinking was reduced to a very low level (i.e. less than 1 unit/week). Moderate to heavy consumption of alcoholic beverages (at least three to four drinks per week) is associated with a 1.3-fold increased risk of the recurrence of breast cancer. Further, consumption of alcohol at any quantity is associated with significantly increased risk of relapse in breast cancer survivors.
There are several reasons why PIN is the most likely prostate cancer precursor. PIN is more common in men with prostate cancer. High grade PIN can be found in 85 to 100% of radical prostatectomy specimens, nearby or even in connection with prostate cancer. It tends to occur in the peripheral zone of the prostate. With age, it becomes increasingly multifocal, like prostate cancer. Molecular analysis has shown that high grade PIN and prostate cancer share many genetic abnormalities. This has been confirmed in a transgenic mouse model.
The risk for men with high grade PIN of being diagnosed with prostate cancer after repeat biopsy has decreased since the introduction of biopsies at more than six locations (traditional sextant biopsies).
CUP sometimes runs in families. It has been associated with familial lung, kidney, and colorectal cancers, which suggests that these sites may often be the origin of unidentifiable CUP cancers.
Drinking may be a cause of earlier onset of colorectal cancer. The evidence that alcohol is a cause of bowel cancer is convincing in men and probable in women.
The National Institutes of Health, the National Cancer Institute, Cancer Research, the American Cancer Society, the Mayo Clinic, and the Colorectal Cancer Coalition, American Society of Clinical Oncology and the Memorial Sloan-Kettering Cancer Center list alcohol as a risk factor.
A WCRF panel report finds the evidence "convincing" that alcoholic drinks increase the risk of colorectal cancer in men at consumption levels above 30 grams of absolute alcohol daily. The National Cancer Institute states, "Heavy alcohol use may also increase the risk of colorectal cancer"
A 2011 meta-analysis found that alcohol consumption was associated with an increased risk of colorectal cancer.
In most series, LCLC's comprise between 5% and 10% of all lung cancers.
According to the Nurses' Health Study, the risk of large cell lung carcinoma increases with a previous history of tobacco smoking, with a previous smoking duration of 30 to 40 years giving a relative risk of approximately 2.3 compared to never-smokers, and a duration of more than 40 years giving a relative risk of approximately 3.6.
Another study concluded that cigarette smoking is the predominant cause of large cell lung cancer. It estimated that the odds ratio associated with smoking two or more packs/day for current smokers is 37.0 in men and 72.9 in women.
A Clear-cell carcinoma is a carcinoma (i.e. not a sarcoma) showing clear cells.
"A rare type of tumor, usually of the female genital tract, in which the insides of the cells look clear when viewed under a microscope. Also called clear cell adenocarcinoma and mesonephroma."
Examples :
- Clear cell renal cell carcinoma ~ clear cell kidney cancer
- Uterine clear-cell carcinoma ~ clear cell endometrial cancer
- Clear-cell ovarian carcinoma
Because most bladder cancers are invasive into the bladder wall, surgical removal is usually not possible. The majority of transitional cell carcinomas are treated with either traditional chemotherapy or nonsteroidal anti-inflammatory drugs.