Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The primary concern with umbilical cord prolapse is inadequate blood supply, and thus oxygen, to the fetus if the cord becomes compressed. The cord can become compressed either due to mechanical pressure (usually from the presenting fetal part) or from sudden contraction of the vessels due to decreased temperatures in the vagina in comparison to the uterus. This can lead to death of the fetus or other complications.
Historically, the rate of fetal death in the setting of cord prolapse has been as high 40%. However, these estimates occurred in the context of home or births outside of the hospital. When considering cord prolapses that have occurred in inpatient labor and delivery settings, the rate drops to as low as 0-3%, though the mortality rate remains higher than for fetuses without cord prolapse. The reduction in mortality for hospital births is likely due to the ready availability of immediate cesarean section.
Many other fetal outcomes have been studied, including Apgar score (a quick assessment of a newborn's health status) at 5 minutes and length of hospitalization after delivery. While both measures are worse for newborns delivered after cord prolapse, it is unclear what effect this has in the long-term. Relatively large studies that have tried to quantify long-term effects of cord prolapse on children found that less than 1% (1 in 120 studied) suffered a major neurologic handicap, and less than 1% (110 in 16,675) had diagnosed cerebral palsy.
Risk factors that are associated with umbilical cord prolapse tend to make it difficult for the fetus from appropriately engaging and filling the maternal pelvis or are related to abnormalities of the umbilical cord. The two major categories of risk factors are spontaneous and iatrogenic, or those that result from medical intervention.
- spontaneous factors:
- fetal malpresentation: abnormal fetal lie tends to result in space below the fetus in the maternal pelvis, which can then be occupied by the cord.
- polyhydramnios, or an abnormally high amount of amniotic fluid
- prematurity: likely related to increased chance of malpresentation and relative polyhydramnios.
- low birth weight: usually described as <2500 g at birth, though some studies will use <1500g. Cause is likely similar to those for prematurity.
- multiple gestation, or being pregnant with more than one fetus at a given time: more likely to occur in the fetus that is not born first.
- spontaneous rupture of membranes: about half of prolapses occur within 5 minutes of membrane rupture, two-thirds within 1 hour, 95% within 24 hours.
- iatrogenic factors
- artificial rupture of membranes
- placement of internal monitors (for example, internal scalp electrode or intrauterine pressure catheter)
- manual rotation of fetal head
Retrospective data of over 182,000 births, with the statistical power to determine even mild associations, suggest that a single or multiple nuchal cords at the time of delivery is not associated with adverse perinatal outcomes, is associated with higher birthweights and fewer caesarean sections in births. Although some studies have found that a tight nuchal cord is associated with short term morbidity, it is unclear whether such outcomes are actually a result of the presence of the nuchal cord itself, or as a result of clamping and cutting the cord
Management of a presenting nuchal cord should be tailored to prevent umbilical cord compression whenever possible. Techniques to preserve an intact nuchal cord depend on how tightly the cord is wrapped around the infant’s neck. If the cord is loose, it can easily be slipped over the infant’s head. The infant can be delivered normally and placed on maternal abdomen as desired. If the cord is too tight to go over the infant’s head, the provider may be able to slip it over the infant’s shoulders and deliver the body through the cord. The cord can then be unwrapped from around the baby after birth. Finally, if the cord is too tight to slip back over the shoulders, one may use the somersault maneuver to allow the body to be delivered. The birth attendant may also choose to clamp and cut the umbilical cord to allow for vaginal delivery if other methods of nuchal cord management are not feasible.
A nuchal cord occurs when the umbilical cord becomes wrapped around the fetal neck 360 degrees. Nuchal cords are common, with prevalence rates of 6% to 37%. Up to half of nuchal cords resolve before delivery.
Umbilical cord compression may be relieved by the mother switching to another position. In persistent severe signs of fetal distress, Cesarean section may be needed.
On cardiotocography (CTG), umbilical cord compression can present with variable decelerations in fetal heart rate.
Velamentous cord insertion is an abnormal condition during pregnancy. Normally, the umbilical cord inserts into the middle of the placenta as it develops. In velamentous cord insertion, the umbilical cord inserts into the fetal membranes (choriamniotic membranes), then travels within the membranes to the placenta (between the amnion and the chorion). The exposed vessels are not protected by Wharton's jelly and hence are vulnerable to rupture. Rupture is especially likely if the vessels are near the cervix, in which case they may rupture in early labor, likely resulting in a stillbirth. This is a serious condition called vasa previa. Not every pregnancy with a velamentous cord insertion results in vasa previa, only those in which the blood vessels are near the cervix.
When a velamentous cord insertion is discovered, the obstetrician will monitor the pregnancy closely for the presence of vasa previa. If the blood vessels are near the cervix, the baby will be delivered via cesarean section as early as 35 weeks to prevent the mother from going into labor, which is associated with a high infant mortality. Early detection can reduce the need for emergency cesarean sections.
Basilar invagination can be present at birth. If the condition develops after birth, it is usually the result of injury or diseases. If due to injury, about half the time it is caused by vehicle or bicycle accidents; 25% of the time by falls and 10% of the time by recreational activities such as diving accidents.
It also occurs in patients with bone diseases, such as osteomalacia, rheumatoid arthritis, Paget's disease, Ehlers-Danlos syndrome, Marfan syndrome, and osteogenesis imperfecta.
Twin reversed arterial perfusion sequence—also called TRAP sequence, TRAPS, or acardiac twinning—is a rare complication of monochorionic twin pregnancies. It is a severe variant of twin-to-twin transfusion syndrome (TTTS). The twins' blood systems are connected instead of independent. One twin, called the "acardiac twin" or "TRAP fetus", is severely malformed. The heart is missing or deformed, hence the name acardiac, as are the upper structures of the body . The legs may be partially present or missing, and internal structures of the torso are often poorly formed. The other twin is usually normal in appearance. The normal twin, called the "pump twin", drives blood through both fetuses. It is called "reversed arterial perfusion" because in the acardiac twin the blood flows in a reversed direction.
TRAP sequence occurs in 1% of monochorionic twin pregnancies and in 1 in 35,000 pregnancies overall.
The precise causes of syringomyelia are still unknown although blockage to the flow of cerebrospinal fluid has been known to be an important factor since the 1970s. Scientists in the UK and America continue to explore the mechanisms that lead to the formation of syrinxes in the spinal cord. It has been demonstrated a block to the free flow of cerebrospinal fluid is a contributory factor in the pathogenesis of the disease. Duke University in America and Warwick University are conducting research to explore genetic features of syringomyelia.
Surgical techniques are also being refined by the neurosurgical research community. Successful procedures expand the area around the cerebellum and spinal cord, thus improving the flow of cerebrospinal fluid thereby reducing the syrinx.
It is also important to understand the role of birth defects in the development of hindbrain malformations that can lead to syringomyelia as syringomyelia is a feature of intrauterine life and is also associated with spina bifida. Learning when these defects occur during the development of the fetus can help us understand this and similar disorders, and may lead to preventive treatment that can stop the formation of some birth abnormalities. Dietary supplements of folic acid prior to pregnancy have been found to reduce the number of cases of spina bifida and are also implicated in prevention of cleft palate and some cardiac defects.
Diagnostic technology is another area for continued research. MRI has enabled scientists to see conditions in the spine, including syringomyelia before symptoms appear. A new technology, known as dynamic MRI, allows investigators to view spinal fluid flow within the syrinx. CT scans allow physicians to see abnormalities in the brain, and other diagnostic tests have also improved greatly with the availability of new, non-toxic, contrast dyes.
The first major form relates to an abnormality of the brain called an Arnold–Chiari malformation or Chiari Malformation. This is the most common cause of syringomyelia, where the anatomic abnormality, which may be due to a small posterior fossa, causes the lower part of the cerebellum to protrude from its normal location in the back of the head into the cervical or neck portion of the spinal canal. A syrinx may then develop in the cervical region of the spinal cord. Here, symptoms usually begin between the ages of 25 and 40 and may worsen with straining, called a valsalva maneuver, or any activity that causes cerebrospinal fluid pressure to fluctuate suddenly. Some patients, however, may have long periods of stability. Some patients with this form of the disorder also have hydrocephalus, in which cerebrospinal fluid accumulates in the skull, or a condition called arachnoiditis, in which a covering of the spinal cord—the arachnoid membrane—is inflamed.
Some cases of syringomyelia are familial, although this is rare.
There are many causes of "fetal distress" including:
- Breathing problems
- Abnormal position and presentation of the fetus
- Multiple births
- Shoulder dystocia
- Umbilical cord prolapse
- Nuchal cord
- Placental abruption
- Premature closure of the fetal ductus arteriosus
- Uterine rupture
- Intrahepatic cholestasis of pregnancy, a liver disorder during pregnancy
Rachischisis (Greek: "rhachis - ῥάχις" - spine, and "schisis - σχίσις" - split) is a developmental birth defect involving the neural tube. This anomaly occurs in utero, when the posterior neuropore of the neural tube fails to close by the 27th intrauterine day. As a consequence the vertebrae overlying the open portion of the spinal cord do not fully form and remain unfused and open, leaving the spinal cord exposed. Patients with rachischisis have motor and sensory deficits, chronic infections, and disturbances in bladder function. This defect often occurs with anencephaly.
Craniorachischisis is a variant of rachischisis that occurs when the entire spinal cord and brain are exposed - simultaneous complete rachischisis and anencephaly. It is incompatible with life; affected pregnancies often end in miscarriage or stillbirth. Infants born alive with craniorachischisis die soon after birth.
Tethered spinal cord can be caused by various conditions but the main cause is when tissue attachments limit the movement of the spinal cord in the spinal column which causes abnormal stretching of the cord. The tethered spinal cord syndrome is correlated with having the causes:
- Spina bifida
- Occulta
- Mylomeningocele
- Meningocele
- History of spinal trauma
- History of spinal surgery
- Tumor(s) in the spinal column
- Thickened and/or tight filum terminale
- Lipoma(s) in the spinal column
- Dermal Sinus Tract (congenital deformity)
- Diastematomyelia (split spinal cord)
Tethered spinal cord is a disorder and not a mechanism so it does not spread to other people and there are no measures that can be done to prevent it beforehand. The only preventative measure that is successful is to surgically untether the spinal cord though there might already be irreversible damage.
Vehicle-related SCI is prevented with measures including societal and individual efforts to reduce driving under the influence of drugs or alcohol, distracted driving, and drowsy driving. Other efforts include increasing road safety (such as marking hazards and adding lighting) and vehicle safety, both to prevent accidents (such as routine maintenance and antilock brakes) and to mitigate the damage of crashes (such as head restraints, air bags, seat belts, and child safety seats). Falls can be prevented by making changes to the environment, such as nonslip materials and grab bars in bathtubs and showers, railings for stairs, child and safety gates for windows. Gun-related injuries can be prevented with conflict resolution training, gun safety education campaigns, and changes to the technology of guns (such as trigger locks) to improve their safety. Sports injuries can be prevented with changes to sports rules and equipment to increase safety, and education campaigns to reduce risky practices such as diving into water of unknown depth or head-first tackling in association football.
Diastematomyelia (occasionally diastomyelia) is a congenital disorder in which a part of the spinal cord is split, usually at the level of the upper lumbar vertebra.
Diastematomyelia is a rare congenital anomaly that results in the "splitting" of the spinal cord in a longitudinal (sagittal) direction. Females are affected much more commonly than males. This condition occurs in the presence of an osseous (bone), cartilaginous or fibrous septum in the central portion of the spinal canal which then produces a complete or incomplete sagittal division of the spinal cord into two hemicords. When the split does not reunite distally to the spur, the condition is referred to as a diplomyelia, or true duplication of the spinal cord.
Basilar invagination is invagination (infolding) of the base of the skull that occurs when the top of the C2 vertebra migrates upward. It can cause narrowing of the foramen magnum (the opening in the skull where the spinal cord passes through to the brain). It also may press on the lower brainstem.
This is similar to Chiari malformation. That, however, is usually present at birth.
Spinal cord injuries are most often caused by physical trauma. Forces involved can be hyperflexion (forward movement of the head); hyperextension (backward movement); lateral stress (sideways movement); rotation (twisting of the head); compression (force along the axis of the spine downward from the head or upward from the pelvis); or distraction (pulling apart of the vertebrae). Traumatic SCI can result in contusion, compression, or stretch injury. It is a major risk of many types of vertebral fracture. Pre-existing asymptomatic congenital anomalies can cause major neurological deficits, such as hemiparesis, to result from otherwise minor trauma.
In the US, Motor vehicle accidents are the most common cause of SCIs; second are falls, then violence such as gunshot wounds, then sports injuries. In some countries falls are more common, even surpassing vehicle crashes as the leading cause of SCI. The rates of violence-related SCI depend heavily on place and time. Of all sports-related SCIs, shallow water dives are the most common cause; winter sports and water sports have been increasing as causes while association football and trampoline injuries have been declining. Hanging can cause injury to the cervical spine, as may occur in attempted suicide. Military conflicts are another cause, and when they occur they are associated with increased rates of SCI. Another potential cause of SCI is iatrogenic injury, caused by an improperly done medical procedure such as an injection into the spinal column.
SCI can also be of a nontraumatic origin. Nontraumatic lesions cause anywhere from 30 to 80% of all SCI; the percentage varies by locale, influenced by efforts to prevent trauma. Developed countries have higher percentages of SCI due to degenerative conditions and tumors than developing countries. In developed countries, the most common cause of nontraumatic SCI is degenerative diseases, followed by tumors; in many developing countries the leading cause is infection such as HIV and tuberculosis. SCI may occur in intervertebral disc disease, and spinal cord vascular disease. Spontaneous bleeding can occur within or outside of the protective membranes that line the cord, and intervertebral disks can herniate. Damage can result from dysfunction of the blood vessels, as in arteriovenous malformation, or when a blood clot becomes lodged in a blood vessel and cuts off blood supply to the cord. When systemic blood pressure drops, blood flow to the spinal cord may be reduced, potentially causing a loss of sensation and voluntary movement in the areas supplied by the affected level of the spinal cord. Congenital conditions and tumors that compress the cord can also cause SCI, as can vertebral spondylosis and ischemia. Multiple sclerosis is a disease that can damage the spinal cord, as can infectious or inflammatory conditions such as tuberculosis, herpes zoster or herpes simplex, meningitis, myelitis, and syphilis.
In tethered spinal cord cases Spina bifida can be accompanied by tethering of the spinal cord but in rare cases with Spina bifida Occulta. Tethering of the spinal cord tends to occur in the cases of Spina bifida with mylomeningocele. In a normal person the spine grows faster than the spinal cord during development which causes the end of the spinal cord to appear to rise relative to the bony spine next to it. By the time of birth the spinal cord is located between L1 and L2. In a baby with Spina bifida the spinal cord is still attached to the skin around it preventing it from rising properly. This occurs because the spinal cord in a child with Spina bifida is low lying and tethered at the bottom. At the time of birth the mylomeningocele is separated from the skin but the spinal cord is still stuck in the same place. As the child begins to grow the spinal cord remains in the same place becoming stretched out causing the tight cord and the tethering at the end. With this type of tethering there is an interference with the blood supply to the nerves and body which can then cause the deterioration of the body causing orthopedic, neurological, and urological problems. With milder forms of Spina bifida such as Occulta, may be related to the degree of strain on the cord which can become worse with physical activity, injury, pregnancy, bone spurs, or spinal stenosis. The tethered cord in this case might not be diagnosed until adulthood when it worsens and can still cause neurological, orthopedic, and urological dysfunctions.
Treatment is determined based on the primary cause of anterior cord syndrome. When the diagnosis of anterior cord syndrome is determined, the prognosis is unfortunate. The mortality rate is approximately 20%, with 50% of individuals living with anterior cord syndrome having very little or no changes in symptoms.
Foix–Alajouanine syndrome is a disorder caused by an arteriovenous malformation of the spinal cord. The patients present with symptoms indicating spinal cord involvement (paralysis of arms and legs, numbness and loss of sensation and sphincter dysfunction), and pathological examination reveals disseminated nerve cell death in the spinal cord and abnormally dilated and tortuous vessels situated on the surface of the spinal cord. Surgical treatment can be tried in some cases. If surgical intervention is contraindicated, corticosteroids may be used.
The condition is named after Charles Foix and Théophile Alajouanine.
If left untreated, the pump twin will die in 50–75% of cases.
After diagnosis, ultrasound and amniocentesis are used to rule out genetic abnormalities in the pump twin. A procedure may then be performed which will stop the abnormal blood flow. The acardiac twin may be selectively removed. The umbilical cord of the acardiac twin may be surgically cut, separating it from the pump twin, a procedure called fetoscopic cord occlusion. Or a radio-frequency ablation needle may be used to coagulate the blood in the acardiac twin's umbilical cord. This last procedure is the least invasive. These procedures greatly increase the survival chances of the pump twin, to about 80%.
The pump twin will be monitored for signs of heart failure with echocardiograms. If the pump twin's condition deteriorates, the obstetrician may recommend early delivery. Otherwise, the pregnancy continues normally. Vaginal birth is possible unless the fetus is in distress, although it is recommended that the delivery take place at a hospital with NICU capabilities.
The most common way the disorder occurs is from a result of hemorrhaging (bleeding within) or inadequate blood supply to the spinal cord, making it weak and susceptible to damage.
Because myelomalacia involves a damaged spinal cord, it may occur in any individual. Those most at risk are the geriatric population due to weaker bone density. Once the spinal injury has occurred, one of two things may happen. Firstly, hemorrhaging within the spinal cord may cause compression, which damages the spinal cord even further. Another consequence of myelomalacia is improper circulation of blood to the area damaged, resulting in further damage to the spinal cord.
Dexamethasone (a potent glucocorticoid) in doses of 16 mg/day may reduce edema around the lesion and protect the cord from injury. It may be given orally or intravenously for this indication.
Surgery is indicated in localised compression as long as there is some hope of regaining function. It is also occasionally indicated in patients with little hope of regaining function but with uncontrolled pain. Postoperative radiation is delivered within 2–3 weeks of surgical decompression. Emergency radiation therapy (usually 20 Gray in 5 fractions, 30 Gray in 10 fractions or 8 Gray in 1 fraction) is the mainstay of treatment for malignant spinal cord compression. It is very effective as pain control and local disease control. Some tumours are highly sensitive to chemotherapy (e.g. lymphomas, small-cell lung cancer) and may be treated with chemotherapy alone.
Once complete paralysis has been present for more than about 24 hours before treatment, the chances of useful recovery are greatly diminished, although slow recovery, sometimes months after radiotherapy, is well recognised.
The median survival of patients with metastatic spinal cord compression is about 12 weeks, reflecting the generally advanced nature of the underlying malignant disease.
Surgery
Surgical intervention is warranted in patients who present with new onset neurological signs and symptoms or have a history of progressive neurological manifestations which can be related to this abnormality. The surgical procedure required for the effective treatment of diastematomyelia includes decompression (surgery) of neural elements and removal of bony spur. This may be accomplished with or without resection and repair of the duplicated dural sacs. Resection and repair of the duplicated dural sacs is preferred since the dural abnormality may partly contribute to the "tethering" process responsible for the symptoms of this condition.
Post-myelographic CT scanning provides individualized detailed maps that enable surgical treatment of cervical diastematomyelia, first performed in 1983.
Observation
Asymptomatic patients do not require surgical treatment. These patients should have regular neurological examinations since it is known that the condition can deteriorate. If any progression is identified, then a resection should be performed.