Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The American College of Rheumatology has outlined 19 syndromes that are seen in NPSLE. These syndromes encompass disorders of the central and peripheral nervous systems:
- Aseptic meningitis
- Cerebrovascular disease
- Demyelinating syndrome
- Headache
- Movement disorder
- Myelopathy
- Seizure disorders
- Acute confusional state
- Anxiety disorder
- Cognitive dysfunction
- Mood disorder
- Psychosis
- Acute inflammatory demyelinating polyradiculoneuropathy
- Autonomic disorder
- Mononeuropathy (single/multiplex)
- Myasthenia gravis
- Cranial neuropathy
- Plexopathy
- Polyneuropathy
Each of the 19 syndromes are also stand-alone diagnoses, which can occur with or without lupus.
The majority of cases involve the central nervous system (CNS), which consists of the brain and spinal cord. The CNS syndromes can be subcategorized as either focal or diffuse. The focal syndromes are neurological, while the diffuse syndromes are psychiatric in nature. The most common CNS syndromes are headache and mood disorder.
Though neuropsychiatric lupus is sometimes referred to as "CNS lupus", it can also affect the peripheral nervous system (PNS). Between 10-15% of people with NPSLE have PNS involvement. Mononeuropathy and polyneuropathy are the most common PNS syndromes.
Neuropsychiatric systemic lupus erythematosus or NPSLE refers to the neurological and psychiatric manifestations of systemic lupus erythematosus. SLE is a disease in which the immune system attacks the body's own cells and tissues. It can affect various organs or systems of the body. It is estimated that over half of people with SLE have neuropsychiatric involvement.
The processes that lead to drug-induced lupus erythematosus are not entirely understood. The exact processes that occur are not known even after 50 years since its discovery, but many studies present theories on the mechanisms of DIL.
A predisposing factor to developing DIL is N-acetylation speed, or the rate at which the body can metabolize the drug. This is greatly decreased in patients with a genetic deficiency of the enzyme N-acetyltransferase. A study showed that 29 of 30 patients with DIL were slow acetylators. In addition, these patients had more hydralazine metabolites in their urine than fast acetylators. These metabolites (byproducts of the interactions between the drug and constituents in the body) of hydralazine are said to have been created when white blood cells have been activated, meaning they are stimulated to produce a respiratory burst. Respiratory burst in white blood cells induces an increased production of free radicals and oxidants such as hydrogen peroxide. These oxidants have been found to react with hydralazine to produce a reactive species that is able to bond to protein. Monocytes, one type of white blood cell, detect the antigen and relay the recognition to T helper cells, creating antinuclear antibodies leading to an immune response. Further studies on the interactions between oxidants and hydralazine are necessary to understand the processes involved in DIL.
Of the drugs that cause DIL, hydralazine has been found to cause a higher incidence. Hydralazine is a medication used to treat high blood pressure. Approximately 5% of the patients who have taken hydralazine over long periods of time and in high doses have shown DIL-like symptoms. Many of the other drugs have a low to very low risk to develop DIL. The following table shows the risk of development of DIL of some of these drugs on a very to high scale.
- High risk:
- Procainamide (antiarrhythmic)
- Hydralazine (antihypertensive)
SLE, like many autoimmune diseases, affects females more frequently than males, at a rate of about 9 to 1. The X chromosome carries immunological related genes, which can mutate and contribute to the onset of SLE. The Y chromosome has no identified mutations associated with autoimmune disease.
Hormonal mechanisms could explain the increased incidence of SLE in females. The onset of SLE could be attributed to the elevated hydroxylation of estrogen and the abnormally decreased levels of androgens in females. In addition, differences in GnRH signalling have also shown to contribute to the onset of SLE. While females are more likely to relapse than males, the intensity of these relapses is the same for both sexes.
In addition to hormonal mechanisms, specific genetic influences found on the X chromosome may also contribute to the development of SLE. Studies indicate that the X chromosome can determine the levels of sex hormones. A study has shown an association between Klinefelter syndrome and SLE. XXY males with SLE have an abnormal X–Y translocation resulting in the partial triplication of the PAR1 gene region.
Some (but not all) studies have shown an association between (migraine) headaches in SLE and associated Raynaud's phenomenon and/or anti-cardiolipin antibodies.
Further studies are needed however to prove the underlying assumption that cerebral vasospasm causes migraines in lupus patients.
Critics of this concept argue that there are no quality studies showing that headaches in patients with SLE differ from those in the general population. A detailed definition of the term lupus headache is lacking, since the terms "severe" and "persistent" are not quantified. Narcotic analgesics are not recommended for migraines or other common headache types. Other definitions from the IHS do not include responsiveness to treatments as a diagnostic criterion. Migraine patients are typically adult women around age 40, a demographic group in which SLE is also more common.
There are assertions that race affects the rate of SLE. However, a 2010 review of studies which correlate race and SLE identified several sources of systematic and methodological error, indicating that the connection between race and SLE may be spurious. For example, studies show that social support is a modulating factor which buffers against SLE-related damage and maintains physiological functionality. Studies have not been conducted to determine whether people of different racial backgrounds receive differing levels of social support. If there is a difference, this could act as a confounding variable in studies correlating race and SLE. Another caveat to note when examining studies about SLE is that symptoms are often self-reported. This process introduces additional sources of methodological error. Studies have shown that self-reported data is affected by more than just the patients experience with the disease- social support, the level of helplessness, and abnormal illness-related behaviors also factor into a self-assessment. Additionally, other factors like the degree of social support that a person receives, socioeconomic status, health insurance, and access to care can contribute to an individual’s disease progression. Racial differences in lupus progression have not been found in studies that control for the socioeconomic status [SES] of participants. Studies that control for the SES of its participants have found that non-white people have more abrupt disease onset compared to white people and that their disease progresses more quickly. Non-white patients often report more hematological, serosal, neurological, and renal symptoms. However, the severity of symptoms and mortality are both similar in white and non-white patients. Studies that report different rates of disease progression in late-stage SLE are most likely reflecting differences in socioeconomic status and the corresponding access to care. The people who receive medical care have often accrued less disease-related damage and are less likely to be below the poverty line. Additional studies have found that education, marital status, occupation, and income create a social context which contributes to disease progression.
Antinuclear antibodies are usually positive in drug induced Lupus. Anti-Neutrophil Cytoplasmic antibodies (ANCA) can also be positive in association with certain drugs. Furthermore, Anti-Histone antibodies can also be positive in drug induced lupus.
Anti-Histone antibodies are positive in up to 95% of patients with drug induced lupus. DIThe most common medications associated with drug induced lupus are hydralazine, procainamide, isoniazid, methyldopa, chlorpromazine, quinidine, and minocycline.
Lupus can develop in any age but most commonly in ages 15 to 44 with varying results. Typically, the manifestation of the disease tends to be more acute in those affected who are of younger age. Women are more likely to get it than men. Patients with juvenile onset Lupus in particular, are vulnerable to mucocutaneous manifestations of the disease (alopecia, skin rash, and ulceration of the mucus membranes) more so than any other age group. However, patients with late onset Lupus have a much higher mortality rate. Nearly 50% of those with late onset Lupus die of their affliction. Women who are of childbearing age are also particularly at risk.
Most patients will maintain a diagnosis of undifferentiated connective tissue disease. However, about one third of UCTD patients will differentiate to a specific autoimmune disease, like rheumatoid arthritis or systemic sclerosis. About 12 percent of patients will go into remission.
Severe vitamin D deficiency has been associated with the progression of UCTD into defined connective tissue diseases. The presence of the autoantibodies anti-dsDNA, anti-Sm, and anti-cardiolipin has been shown to correlate with the development of systemic lupus erythematosus, specifically.
The prognosis of mixed connective tissue disease is in one third of cases worse than that of systemic lupus erythematosus (SLE). In spite of prednisone treatment, this disease is progressive and may in many cases evolve into a progressive systemic sclerosis (PSS), also referred to as diffuse cutaneous systemic scleroderma (dcSSc) which has a poor outcome. In some cases though the disease is mild and may only need aspirin as a treatment and may go into remission where no Anti-U1-RNP antibodies are detected, but that is rare or within 30% of cases. Most deaths from MCTD are due to heart failure caused by pulmonary arterial hypertension (PAH).
An overlap syndrome is an autoimmune disease of connective tissue in which a person presents with symptoms of two or more diseases.
Examples of overlap syndromes include mixed connective tissue disease and scleromyositis. Diagnosis depends on which diseases the patient shows symptoms and has positive antibodies for in their lab serology.
In overlap syndrome, features of the following diseases are found (most common listed):
- Systemic lupus erythematosus (SLE),
- Systemic sclerosis,
- Polymyositis,
- Dermatomyositis,
- Rheumatoid arthritis (RA)
- Sjögren's syndrome
- Eosinophilic granulomatosis with polyangiitis (EGPA)
- Autoimmune thyroiditis
- Antiphospholipid antibody syndrome
The treatment of overlap syndrome is mainly based on the use of corticosteroids and immunosuppressants. Biologic drugs, i.e. anti-TNFα or anti-CD20 monoclonal antibodies, have been recently introduced as alternative treatments in refractory cases. There are some concerns with the use of anti-TNF agents in patients with systemic autoimmune diseases due to the risk of triggering disease exacerbations.
SLE causes an increased rate of fetal death "in utero" and spontaneous abortion (miscarriage). The overall live-birth rate in SLE patient has been estimated to be 72%. Pregnancy outcome appears to be worse in SLE patients whose disease flares up during pregnancy.
Miscarriages in the first trimester appear either to have no known cause or to be associated with signs of active SLE. Later losses appear to occur primarily due to the antiphospholipid syndrome, in spite of treatment with heparin and aspirin. All women with lupus, even those without previous history of miscarriage, are recommended to be screened for antiphospholipid antibodies, both the lupus anticoagulant (the RVVT and sensitive PTT are the best screening battery) and anticardiolipin antibodies.
Prevalence is estimated to be 0.005%. The age of onset has been found to be under 15 years in 40% of cases while it is between 10 and 14 years in one third of the cases. Females outnumber males, 4 to 1. Only 3% have attacks after age 52.
Substantial data have been found to indicate that certain ethnic populations could be more at risk for Lupus Erythematosus, and have a better or worse prognosis. Asian, African, and Native Americans are more likely to get Lupus than Caucasians. Caucasians seem to generally have a more mild manifestation of the disease. Their survival rates after five years were typically around 94%-96%, while patients of African, and some Asian ethnicities had survival rates closer to 79%-92%. The only documented ethnicity that had a higher survival rate than Caucasians were Koreans, who had survival rates nearer to 98%. Among Caucasians, the most common causes of death were complications involving the cardiovascular system, the respiratory system and problems with malignancies. Atherosclerotic cardiovascular disease is more prevalent in African American Lupus patients compared to Caucasians with Lupus.
These are also referred to as systemic autoimmune diseases. The autoimmune CTDs may have both genetic and environmental causes. Genetic factors may create a predisposition towards developing these autoimmune diseases. They are characterized as a group by the presence of spontaneous overactivity of the immune system that results in the production of extra antibodies into the circulation. The classic collagen vascular diseases have a "classic" presentation with typical findings that doctors can recognize during an examination. Each also has "classic" blood test abnormalities and abnormal antibody patterns. However, each of these diseases can evolve slowly or rapidly from very subtle abnormalities before demonstrating the classic features that help in the diagnosis. The classic collagen vascular diseases include:
- Systemic lupus erythematosus (SLE) – An inflammation of the connective tissues, SLE can afflict every organ system. It is up to nine times more common in women than men and strikes black women three times as often as white women. The condition is aggravated by sunlight.
- Rheumatoid arthritis – Rheumatoid arthritis is a systemic disorder in which immune cells attack and inflame the membrane around joints. It also can affect the heart, lungs, and eyes. Of the estimated 2.1 million Americans with rheumatoid arthritis, approximately 1.5 million (71 percent) are women.
- Scleroderma – an activation of immune cells that produces scar tissue in the skin, internal organs, and small blood vessels. It affects women three times more often than men overall, but increases to a rate 15 times greater for women during childbearing years, and appears to be more common among black women.
- Sjögren's syndrome – also called Sjögren's disease, is a chronic, slowly progressing inability to secrete saliva and tears. It can occur alone or with rheumatoid arthritis, scleroderma, or systemic lupus erythematosus. Nine out of 10 cases occur in women, most often at or around mid-life.
- Mixed connective tissue disease – Mixed connective-tissue disease (MCTD) is a disorder in which features of various connective-tissue diseases (CTDs) such as systemic lupus erythematosus (SLE); systemic sclerosis (SSc); dermatomyositis (DM); polymyositis (PM); anti-synthetase syndrome; and, occasionally, Sjögren syndrome can coexist and overlap. The course of the disease is chronic and usually milder than other CTDs. In most cases, MCTD is considered an intermediate stage of a disease that eventually becomes either SLE or Scleroderma.
- Undifferentiated connective tissue disease (UCTD) is a disease in which the body mistakenly attacks its own tissues. It is diagnosed when there is evidence of an existing autoimmune condition which does not meet the criteria for any specific autoimmune disease, such as systemic lupus erythematosus or scleroderma. Latent lupus and incomplete lupus are alternative terms that have been used to describe this condition.
- Psoriatic arthritis is also a collagen vascular disease.
Neonatal lupus is the occurrence of SLE symptoms in an infant born from a mother with SLE, most commonly presenting with a rash resembling discoid lupus erythematosus, and sometimes with systemic abnormalities such as heart block or hepatosplenomegaly. Neonatal lupus is usually benign and self-limited. Still, identification of mothers at highest risk for complications allows for prompt treatment before or after birth. In addition, SLE can flare up during pregnancy, and proper treatment can maintain the health of the mother for longer.
Lupus systemic erythematosus is one of the most common causes of cerebritis as it is believed that more than half of the patients with lupus from the United States suffer from a degree or another of lupus cerebritis.
The exact pathophysiological process of lupus cerebritis is unknown. The proposed mechanisms are likely due to the assault of several autoimmune system changes, including the following:
- Circulating immune complexes. The immune complexes, which consist of DNA and anti-DNA, cause an inflammatory response as well as a disruption of the blood–brain barrier. These circulating complexes have been found trapped in the highly vascular choroid plexus of SLE patients upon autopsy. True vasculitis, however, is found only in about 10% of patients with cerebral lupus.
- Anti-neuronal antibodies. The three identified anti-neuronal antibodies postulated in CNS involvement are the lympho-cytotoxic antibodies (LCAs), which somehow react with brain tissue and interfere with the neuron's ability to respond. LCAs have a specific role and are found in both the serum and cerebrospinal fluid (CSF) of lupus patients with cerebritis. These antibodies also correlate with cognitive and visual spatial defects. Second, the anti-neuronal membrane antibodies are targeted directly to neuronal antigens. They, too, are found in the serum of SLE patients with cerebritis. And third, the intracytoplasmic antibodies target the constituents of the neuron cells and they are found in the CSF and serum. These antibodies are seen in 90% of SLE patients with psychosis.
- Antiphospholipid antibodies. The two antibodies implicated are anticardiolipin and lupus anticoagulant. Anticardiolipin antibodies attach to the endothelial lining of cells, causing endothelial damage, platelet aggregation, inflammation, and fibrosis.
- Cytokine release. The final mechanism of lupus cerebritis involves the cytokines. The cytokines trigger edema, endothelial thickening, and infiltration of neutrophils in brain tissue. Two cytokines, interferon alpha and interleukin-6, have been found in the CSF of SLE patients with psychosis.
However, it is not clear which mechanism is the actual cause of cerebritis in lupus patients. Specialists believe that all mechanisms may be present at the same time or they may act independently.
In very rare cases, cerebritis may occur as a result of a Klebsiella pneumoniae infection.
One other reason to develop cerebritis is an infection caused by bacteria, viruses, or other organisms. Infections can occur when infectious agents enter the brain through the sinuses or as a result of trauma. Some pathogens are also capable of passing over the blood–brain barrier and entering the brain through the bloodstream, despite the fact that the body has evolved defenses which are specifically designed to prevent this.
Treatment largely depends upon individual disease progression and the nature of presenting symptoms. Antimalarials, corticosteroids, and other drugs may be prescribed, if deemed appropriate by the treating physician.
The Great Imitator (also The Great Masquerader) is a phrase used for medical conditions that feature nonspecific symptoms and may be confused with a number of other diseases. Most great imitators are systemic in nature. Diseases sometimes referred to with this name include:
- Various cancers
- Intravascular large B-cell lymphoma
- Various rheumatic conditions, including:
- Fibromyalgia
- Psoriatic arthritis
- Lupus erythematosus
- Systemic lupus erythematosus
- Sarcoidosis
- Multiple sclerosis
- Celiac disease
- Addison's Disease
- Pulmonary embolism
- Various infectious diseases, including:
- Syphilis
- Lyme disease
- Nocardiosis
- Tuberculosis
- Brucellosis
- Malaria
- Breathing-related sleep disorders (chiefly sleep apnea/hypopnea and upper-airway resistance syndrome).
Mixed connective tissue disease (also known as Sharp's syndrome), commonly abbreviated as MCTD, is an autoimmune disease characterized by the presence of high blood levels of a specific autoantibody, now called anti-U1 ribonucleoprotein (RNP). The idea behind the "mixed" disease is that this specific autoantibody is also present in other autoimmune diseases such as systemic lupus erythematosus, polymyositis, scleroderma, etc. It was characterized in 1972, and the term was introduced by Leroy in 1980.
It is sometimes said to be the same as undifferentiated connective tissue disease, but other experts specifically reject this idea because undifferentiated connective tissue disease is not necessarily associated with serum antibodies directed against the U1-RNP, and MCTD is associated with a more clearly defined set of signs/symptoms.
Risk factors for developing antiphospholipid syndrome include:
- Primary APS
- genetic marker HLA-DR7
- Secondary APS
- SLE or other autoimmune disorders
- Genetic markers: HLA-B8, HLA-DR2, HLA-DR3
- Race: Blacks, Hispanics, Asians, and Native Americans
There is an additional elevated risk of adrenal gland bleeds leading to Waterhouse–Friderichsen syndrome (Neisseria meningitidis caused primary adrenal insufficiency). This will require adrenal steroid replacement treatment for life.
Kikuchi-Fujimoto disease (KFD) is a rare, self-limiting disorder that typically affects the cervical lymph nodes. Recognition of this condition is crucial, especially because it can easily be mistaken for tuberculosis, lymphoma, or even adenocarcinoma. Awareness of this disorder helps prevent misdiagnosis and inappropriate treatment.
Kikuchi's disease is a very rare disease mainly seen in Japan. Isolated cases are reported in North America, Europe, and Asia. It is mainly a disease of young adults (20–30 years), with a slight bias towards females. The cause of this disease is not known, although infectious and autoimmune causes have been proposed. The course of the disease is generally benign and self-limiting. Lymph node enlargmeent usually resolves over several weeks to six months. Recurrence rate is about 3%. Death from Kikuchi disease is extremely rare and usually occurs due to liver, respiratory, or heart failure.
Lupus is a condition with no known cure. Lupus cerebritis however is treated by suppressing the autoimmune activity.
When it is caused by infections, treatment consists of medication that will primarily cure the infection. For inflammation, steroids can be used to bring down the swelling. If the swelling appears to have increased to a dangerous level, surgery may be needed to relieve pressure on the brain. The formation of an abscess also calls for surgery as it will be necessary to drain the abscess.
A connective tissue disease is any disease that has the connective tissues of the body as a target of pathology. Connective tissue is any type of biological tissue with an extensive extracellular matrix that supports, binds together, and protects organs. These tissues form a framework, or matrix, for the body, and are composed of two major structural protein molecules: collagen and elastin. There are many different types of collagen protein in each of the body's tissues. Elastin has the capability of stretching and returning to its original length—like a spring or rubber band. Elastin is the major component of ligaments (tissues that attach bone to bone) and skin. In patients with connective tissue disease, it is common for collagen and elastin to become injured by inflammation (ICT). Many connective tissue diseases feature abnormal immune system activity with inflammation in tissues as a result of an immune system that is directed against one's own body tissues (autoimmunity).
Diseases in which inflammation or weakness of collagen tends to occur are also referred to as collagen diseases. Collagen vascular diseases can be (but are not necessarily) associated with collagen and blood vessel abnormalities and that are autoimmune in nature. See also vasculitis.
Connective tissue diseases can have strong or weak inheritance risks, and can also be caused by environmental factors.