Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Other genetic causes of chorea are rare. They include the classical Huntington's disease 'mimic' or phenocopy syndromes, called Huntington's disease-like syndrome types 1, 2 and 3; inherited prion disease, the spinocerebellar ataxias type 1, 3 and 17, neuroacanthocytosis, dentatorubral-pallidoluysian atrophy (DRPLA), brain iron accumulation disorders, Wilson's disease, benign hereditary chorea, Friedreich's ataxia, mitochondrial disease and Rett syndrome.
The length of the trinucleotide repeat accounts for 60% of the variation in the age symptoms appear and the rate they progress. A longer repeat results in an earlier age of onset and a faster progression of symptoms. Individuals with more than sixty repeats often develop the disease before age 20, while those with fewer than 40 repeats may not ever develop noticeable symptoms. The remaining variation is due to environmental factors and other genes that influence the mechanism of the disease.
Life expectancy in HD is generally around 20 years following the onset of visible symptoms. Most life-threatening complications result from muscle coordination and, to a lesser extent, behavioral changes induced by declining cognitive function. The largest risk is pneumonia, which causes death in one third of those with HD. As the ability to synchronize movements deteriorates, difficulty clearing the lungs and an increased risk of aspirating food or drink both increase the risk of contracting pneumonia. The second greatest risk is heart disease, which causes almost a quarter of fatalities of those with HD. Suicide is the third greatest cause of fatalities, with 7.3% of those with HD taking their own lives and up to 27% attempting to do so. It is unclear to what extent suicidal thoughts are influenced by behavioral symptoms, as they signify sufferers' desires to avoid the later stages of the disease. Other associated risks include choking, physical injury from falls, and malnutrition.
Huntington's disease is a neurodegenerative disease and the most common inherited cause of chorea. The condition was formerly called Huntington's chorea but was renamed because of the important non-choreic features including cognitive decline and behavioural change.
The families of individuals who have inherited or are at risk of inheriting HD have generations of experience of HD, but may be unaware of recent breakthroughs in understanding the disease, and of the availability of genetic testing. Genetic counseling benefits these individuals by updating their knowledge, seeking to dispel any unfounded beliefs that they may have, and helping them consider their future options and plans. Also covered is information concerning family planning choices, care management, and other considerations.
Parkinson-plus syndromes are usually more rapidly progressive and less likely to respond to antiparkinsonian medication than PD. However, the additional features of the diseases may respond to medications not used in PD.
Current therapy for Parkinson-plus syndromes is centered around a multidisciplinary treatment of symptoms.
These disorders have been linked to pesticide exposure.
Clinical presentation of CBD usually does not occur until age 60, with the earliest recorded diagnosis and subsequent postmortem verification being age 28. Although men and women present with the disease, some analysis has shown a predominant appearance of CBD in women. Current calculations suggest that the prevalence of CBD is approximately 4.9 to 7.3 per 100,000 people. The prognosis for an individual diagnosed with CBD is death within approximately eight years, although some patients have been diagnosed over 17 years ago (2017) and are still in relatively good standing, but with serious debilitation such as dysphagia, and overall limb rigidity. The partial (or total) use of a feeding tube may be necessary and will help prevent aspiration pneumonia, primary cause of death in CBD. Incontinence is common, as patients often can't express their need to go, due to eventual loss of speech. Therefore, proper hygiene is mandatory to prevent urinary tract infections.
Parkinson-plus syndromes, also known as disorders of multiple system degeneration, is a group of neurodegenerative diseases featuring the classical features of Parkinson's disease (tremor, rigidity, akinesia/bradykinesia, and postural instability) with additional features that distinguish them from simple idiopathic Parkinson's disease (PD). Some consider Alzheimer's disease to be in this group. Parkinson-plus syndromes are either inherited genetically or occur sporadically.
The atypical parkinsonian or Parkinson-plus syndromes are often difficult to differentiate from PD and each other. They include multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Dementia with Lewy bodies (DLB), may or may not be part of the PD spectrum, but it is increasingly recognized as the second-most common type of neurodegenerative dementia after Alzheimer's disease. These disorders are currently lumped into two groups, the synucleinopathies and the tauopathies. They may coexist with other pathologies.
Additional Parkinson-plus syndromes include Pick's disease and olivopontocerebellar atrophy. The latter is characterized by ataxia and dysarthria, and may occur either as an inherited disorder or as a variant of multiple system atrophy. MSA is also characterized by autonomic failure, formerly known as Shy–Drager syndrome.
Clinical features that distinguish Parkinson-plus syndromes from idiopathic PD include symmetrical onset, a lack of or irregular resting tremor, and a reduced response to dopaminergic drugs (including levodopa). Additional features include bradykinesia, early-onset postural instability, increased rigidity in axial muscles, dysautonomia, alien limb syndrome, supranuclear gaze palsy, apraxia, involvement of the cerebellum including the pyramidal cells, and in some instances significant cognitive impairment.
Neurodegeneration is the progressive loss of structure or function of neurons, including death of neurons. Many neurodegenerative diseases – including amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's – occur as a result of neurodegenerative processes. Such diseases are incurable, resulting in progressive degeneration and/or death of neuron cells. As research progresses, many similarities appear that relate these diseases to one another on a sub-cellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate many diseases simultaneously. There are many parallels between different neurodegenerative disorders including atypical protein assemblies as well as induced cell death. Neurodegeneration can be found in many different levels of neuronal circuitry ranging from molecular to systemic.
Corticobasal degeneration (CBD) or corticobasal ganglionic degeneration (CBGD) is a rare, progressive neurodegenerative disease involving the cerebral cortex and the basal ganglia. CBD symptoms typically begin in people from 50–70 years of age, and the average disease duration is six years. It is characterized by marked disorders in movement and cognitive dysfunction, and is classified as one of the Parkinson plus syndromes. Clinical diagnosis is difficult, as symptoms of CBD are often similar to those of other disorders, such as Parkinson's disease (PD), progressive supranuclear palsy (PSP), and dementia with Lewy bodies (DLB). Due to the various clinical presentations associated with CBD, a final diagnosis can only be made upon neuropathologic examination.
Several pathogenetic mechanisms for chorea gravidarum have been offered, but none have been proven.
History of either rheumatic fever or chorea is suspected: the suggestion is that estrogens and progesterone may sensitize dopamine receptors (presumably at a striatal level) and induce chorea in individuals who are vulnerable to this complication by virtue of preexisting pathology in the basal ganglia.
The relation to rheumatic fever was strengthened by many studies that showed that women with normal pregnancies before rheumatic fever developed chorea in subsequent pregnancies. At least 35% of patients have a definite history of acute rheumatic fever and Sydenham chorea; 4% of those with chorea gravidarum had acute rheumatic fever.
It has been suggested that use of oral contraceptives is an infrequent cause of chorea. A patient developed this chorea with no definite evidence of previous Sydenham's chorea or recent streptoccocal infections, but had anti-basal ganglia antibodies, suggesting immunological basis for the pathophysiology of this chorea.
Chorea can also be a manifestation of drug toxicity (for example, anticonvulsants, antiparkinson agents, neuroleptics, steroids, and estrogen), or a result of an infectious disease such as meningovascular syphilis, Lyme disease, viral encephalitis, and many others.
Pick's disease is a term that can be used in two different ways. It has traditionally been used as a term for a group of neurodegenerative diseases with symptoms attributable to frontal and temporal lobe dysfunction. Common symptoms that are noticed early are personality and emotional changes, as well as deterioration of language. This condition is now more commonly called frontotemporal dementia by professionals, and the use of "Pick's disease" as a clinical diagnosis has fallen out of fashion. The second use of the term (and the one now used among professionals) is to mean a specific pathology that is one of the causes of frontotemporal lobar degeneration. These two uses have previously led to confusion among professionals and patients and so its use should be restricted to the specific pathological subtype described below. It is also known as Pick disease and PiD (not to be confused with pelvic inflammatory disease (PID) or Parkinson's disease (PD)). A defining characteristic of the disease is build-up of tau proteins in neurons, accumulating into silver-staining, spherical aggregations known as "Pick bodies".
Tauopathy belongs to a class of neurodegenerative diseases associated with the pathological aggregation of tau protein in neurofibrillary or gliofibrillary tangles in the human brain. Tangles are formed by hyperphosphorylation of a microtubule-associated protein known as tau, causing it to aggregate in an insoluble form. (These aggregations of hyperphosphorylated tau protein are also referred to as paired helical filaments). The precise mechanism of tangle formation is not completely understood, and it is still controversial as to whether tangles are a primary causative factor in the disease or play a more peripheral role. Primary tauopathies, i.e., conditions in which neurofibrillary tangles (NFT) are predominantly observed, include:
- Primary age-related tauopathy (PART)/Neurofibrillary tangle-predominant senile dementia, with NFTs similar to AD, but without plaques.
- Chronic traumatic encephalopathy, including dementia pugilistica
- Progressive supranuclear palsy
- Corticobasal degeneration
- Frontotemporal dementia and parkinsonism linked to chromosome 17
- Lytico-Bodig disease (Parkinson-dementia complex of Guam)
- Ganglioglioma and gangliocytoma
- Meningioangiomatosis
- Postencephalitic parkinsonism
- Subacute sclerosing panencephalitis
- As well as lead encephalopathy, tuberous sclerosis, Hallervorden-Spatz disease, and lipofuscinosis
Neurofibrillary tangles were first described by Alois Alzheimer in one of his patients suffering from Alzheimer's disease (AD), which is considered a secondary tauopathy. AD is also classified as an amyloidosis because of the presence of senile plaques.
The degree of NFT involvement in AD is defined by Braak stages. Braak stages I and II are used when NFT involvement is confined mainly to the transentorhinal region of the brain, stages III and IV when there's also involvement of limbic regions such as the hippocampus, and V and VI when there's extensive neocortical involvement. This should not be confused with the degree of senile plaque involvement, which progresses differently.
In both Pick's disease and corticobasal degeneration, tau proteins are deposited as inclusion bodies within swollen or "ballooned" neurons.
Argyrophilic grain disease (AGD), another type of dementia, is marked by an abundance of argyrophilic grains and coiled bodies upon microscopic examination of brain tissue. Some consider it to be a type of Alzheimer's disease. It may co-exist with other tauopathies such as progressive supranuclear palsy and corticobasal degeneration, and also Pick's disease.
Huntington's disease (HD): a neurodegenerative disease caused by a CAG tripled expansion in the Huntington gene is the most recently described tauopathy (Fernandez-Nogales et al. Nat Med 2014). JJ Lucas and co-workers demonstrate that, in brains with HD, tau levels are increased and the 4R/3R balance is altered. In addition, the Lucas study shows intranuclear insoluble deposits of tau; these "Lucas' rods" were also found in brains with Alzheimer's disease.
Tauopathies are often overlapped with synucleinopathies, possibly due to interaction between the synuclein and tau proteins.
The non-Alzheimer's tauopathies are sometimes grouped together as "Pick's complex" due to their association with frontotemporal dementia, or frontotemporal lobar degeneration.
The symptoms of Pick's disease include difficulty in language and thinking, efforts to dissociate from family, behavioral changes, unwarranted anxiety, irrational fears, CBD (Compulsive buying disorder, or oniomania), impaired regulation of social conduct (e.g., breaches of etiquette, vulgar language, tactlessness, , misperception), passivity, low motivation (aboulia), inertia, over-activity, pacing and wandering. It is a characteristic of Pick’s disease that dysfunctional, argumentative, or hostile social conduct is initially exhibited towards family members and not initially exhibited in a workplace or neutral environment. The changes in personality allow doctors to distinguish between Pick's disease and Alzheimer's disease. Pick's disease is one of the causes of the clinical syndrome of frontotemporal lobar degeneration which has three subtypes. Pick's disease pathology is associated more with the frontotemporal dementia and progressive nonfluent aphasia subtypes than the semantic dementia subtype.
There is physiological intracranial calcification in about 0,3-1,5% of individuals. Fahr's disease is a rare, genetically dominant, inherited neurological disorder characterized by abnormal deposits of calcium, primarily in the basal ganglia.
Basal ganglia disease is a group of physical s that occur when the group of nuclei in the brain known as the basal ganglia fail to properly suppress unwanted movements or to properly prime upper motor neuron circuits to initiate motor function. Research indicates that increased output of the basal ganglia inhibits thalamocortical projection neurons. Proper activation or deactivation of these neurons is an integral component for proper movement. If something causes too much basal ganglia output, then the thalamocortical projection neurons become too inhibited and one cannot initiate voluntary movement. These disorders are known as hypokinetic disorders. However, a disorder leading to abnormally low output of the basal ganglia leads to relatively no inhibition of the thalamocortical projection neurons. This situation leads to an inability to suppress unwanted movements. These disorders are known as hyperkinetic disorders. Currently, reasons for abnormal increases or decreases of basal ganglia output are poorly understood. One possible factor could be the natural accumulation of iron in the basal ganglia, causing neurodegeneration due to its involvement in toxic free-radical reactions. Though motor disorders are the most common associated with the basal ganglia, recent research shows that basal ganglia disorders can lead to other dysfunctions such as obsessive compulsive disorder (OCD) and Tourette syndrome.
The Huntington's disease-like syndromes (often abbreviated as HD-like or "HDL" syndromes) are a family of inherited neurodegenerative diseases that closely resemble Huntington's disease (HD) in that they typically produce a combination of chorea, cognitive decline or dementia and behavioural or psychiatric problems.
Two other types, primary ciliary dyskinesia and biliary dyskinesia, are caused by specific kinds of ineffective movement of the body, and are not movement disorders.
Spastic thrusting of hip area can occur in Sodemytopic Parkinson's.
There is no cure or treatment for GSS. It can, however, be identified through genetic testing. GSS is the slowest to progress among human prion diseases. Duration of illness can range from 3 months to 13 years, with an average duration of 5 or 6 years.
GSS is one of a small number of diseases that are caused by prions, a class of pathogenic proteins highly resistant to proteases.
A change in codon 102 from proline to leucine has been found in the prion protein gene ("PRNP", on chromosome 20) of most affected individuals. Therefore, it appears this genetic change is usually required for the development of the disease.
A major manifestation of acute rheumatic fever, Sydenham's chorea is a result of an autoimmune response that occurs following infection by group A β-hemolytic streptococci that destroys cells in the corpus striatum of the basal ganglia. Molecular mimicry to streptococcal antigens leading to an autoantibody production against the basal ganglia has long been thought to be the main mechanism by which chorea occurs in this condition. In 2012, antibodies in serum to the cell surface antigen; dopamine 2 receptor were shown in up to a third of patients in a cohort of Sydenham's chorea. Whether these antibodies represent an epi-phenomenon or are pathogenic, remains to be proven.
There are many causes of childhood chorea, including cerebrovascular accidents, collagen vascular diseases, drug intoxication, hyperthyroidism, Wilson's disease, Huntington's disease, abetalipoproteinemia, Fahr disease, biotin-thiamine-responsive basal ganglia disease due to mutations in the SLC19A3 gene, Lesch-Nyhan syndrome, and infectious agents.
Fifty percent of patients with acute Sydenham's chorea spontaneously recover after two to six months whilst mild or moderate chorea or other motor symptoms can persist for up to and over two years in some cases. Sydenham's is also associated with psychiatric symptoms with obsessive compulsive disorder being the most frequent manifestation.
A motor neuron disease (MND) is any of several neurological disorders that selectively affect motor neurons, the cells that control voluntary muscles of the body. They include amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP), primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), progressive bulbar palsy (PBP) and pseudobulbar palsy. Spinal muscular atrophies (SMA) are sometimes included in the group by some neurologists but it is different disease with clear genetic cause. They are neurodegenerative in nature and cause increasing disability and eventually, death.
Many other neurological conditions are associated with acanthocytosis but are not considered 'core' acanthocytosis syndromes. The commonest are:
- Pantothenate kinase-associated neurodegeneration, an autosomal recessive condition caused by mutations in "PANK2".
- Huntington's disease-like syndrome type 2, an autosomal dominant condition caused by mutations in "JPH3" that closely resembles Huntington's disease.
- Bassen-Kornzweig disease, or Bassen-Kornzweig Syndrome (see also History).
- Levine-Critchley syndrome (see History).
- Paroxysmal movement disorders associated with GLUT1 mutations.
- Familial acanthocytosis with paroxysmal exertion-induced dyskinesias and epilepsy (FAPED).
- Some cases of mitochondrial disease.
McLeod syndrome is an X-linked recessive disorder caused by mutations in the "XK" gene encoding the Kx blood type antigen, one of the Kell antigens.
Like the other neuroacanthocytosis syndromes, McLeod syndrome causes movement disorder, cognitive impairment and psychiatric symptoms. The particular features of McLeod syndrome are heart problems such as arrhythmia and dilated cardiomyopathy (enlarged heart).
McLeod syndrome is very rare. There are approximately 150 cases of McLeod syndrome worldwide. Because of its X-linked mode of inheritance, it is much more prevalent in males.