Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Many health conditions can cause autonomic neuropathy. Some common causes of autonomic neuropathy include:
- Diabetes, which is the most common cause of autonomic neuropathy, can gradually cause nerve damage throughout the body.
- Injury to nerves caused by surgery or radiation to the neck.
- Treatment with certain medications, including some drugs used in cancer chemotherapy.
- Abnormal protein buildup in organs (amyloidosis), which affects the organs and the nervous system.
- Other chronic illnesses, such as Parkinson's disease, multiple sclerosis and some types of dementia.
- Autonomic neuropathy may also be caused by an abnormal attack by the immune system that occurs as a result of some cancers (paraneoplastic syndrome).
- Certain infectious diseases. Some viruses and bacteria, such as botulism, Lyme disease and HIV, can cause autonomic neuropathy.
- Inherited disorders. Certain hereditary disorders can cause autonomic neuropathy.
- Autoimmune diseases, in which the immune system attacks and damages parts of the body, including the nerves. Examples include Sjogren's syndrome, systemic lupus erythematosus, rheumatoid arthritis and celiac disease. Guillain-Barre syndrome is an autoimmune disease that happens rapidly and can affect autonomic nerves.
Nervous system disease refers to a small class of medical conditions affecting the nervous system.
The Nervous System Diseases can be divided into two categories:
- Central nervous system disease in the CNS
- Peripheral neuropathy in the PNS
Of the phenomena occurring in neurosarcoid, only facial nerve involvement is known to have a good prognosis and good response to treatment. Long-term treatment is usually necessary for all other phenomena. The mortality rate is estimated at 10%
The prognosis of dysautonomia depends on several factors; individuals with chronic, progressive, generalized dysautonomia in the setting of central nervous system degeneration such as Parkinson's disease or multiple system atrophy have a generally poorer long-term prognosis. Consequently, dysautonomia could be fatal due to pneumonia, acute respiratory failure, or sudden cardiopulmonary arrest.
Autonomic dysfunction symptoms such as orthostatic hypotension, gastroparesis, and gustatory sweating are more frequently identified in mortalities.
Incidence of demyelinating diseases vary from disorder to disorder. Some conditions, such as Tabes dorsalis appear predominantly in males and begins in mid-life. Optic neuritis on the other hand, occurs preferentially in females typically between the ages of 30 and 35. Other conditions such as multiple sclerosis vary in prevalence depending on the country and population. This condition can appear in children as well as adults.
Sarcoidosis has a prevalence of 40 per 100,000 in the general population. However, though those with the GG genotype at rs1049550 in the ANXA11 gene were found to have 1.5-2.5 times higher odds of sarcoidosis compared to those with the AG genotype, while those with the AA genotype had about 1.6 times lower odds. Furthermore, those with Common Variable Immunodeficiency (CVID) may be at even higher risk. One study of 80 CVID patients found 8 of these had sarcoidosis, suggesting as high a prevalence in CVID populations as 1 in 10. Given that less than 10% of those with sarcoidosis will have neurological involvement, and possibly later on in their disease course, neurosarcoidosis has a prevalence of less than 4 per 100,000.
Sarcoidosis most commonly affects young adults of both sexes, although studies have reported more cases in females. Incidence is highest for individuals younger than 40 and peaks in the age-group from 20 to 29 years; a second peak is observed for women over 50.
Sarcoidosis occurs throughout the world in all races with an average incidence of 16.5/100,000 in men and 19/100,000 in women. The disease is most prevalent in Northern European countries and the highest annual incidence of 60/100,000 is found in Sweden and Iceland. In the United States sarcoidosis is more common in people of African descent than Caucasians, with annual incidence reported as 35.5 and 10.9/100,000, respectively. Sarcoidosis is less commonly reported in South America, Spain, India, Canada, and the Philippines. There may be a higher susceptibility to sarcoidosis in those with coeliac disease. An association between the two disorders has been suggested.
The differing incidence across the world may be at least partially attributable to the lack of screening programs in certain regions of the world and the overshadowing presence of other granulomatous diseases, such as tuberculosis, that may interfere with the diagnosis of sarcoidosis where they are prevalent.
There may also be differences in the severity of the disease between people of different ethnicities. Several studies suggest that the presentation in people of African origin may be more severe and disseminated than for Caucasians, who are more likely to have asymptomatic disease.
Manifestation appears to be slightly different according to race and sex. Erythema nodosum is far more common in men than in women and in Caucasians than in other races. In Japanese patients, ophthalmologic and cardiac involvement are more common than in other races.
Sarcoidosis is one of the few pulmonary diseases with a higher prevalence in non-smokers.
Although the brain and spinal cord are surrounded by tough membranes, enclosed in the bones of the skull and spinal vertebrae, and chemically isolated by the blood–brain barrier, they are very susceptible if compromised. Nerves tend to lie deep under the skin but can still become exposed to damage. Individual neurons, and the neural networks and nerves into which they form, are susceptible to electrochemical and structural disruption. Neuroregeneration may occur in the peripheral nervous system and thus overcome or work around injuries to some extent, but it is thought to be rare in the brain and spinal cord.
The specific causes of neurological problems vary, but can include genetic disorders, congenital abnormalities or disorders, infections, lifestyle or environmental health problems including malnutrition, and brain injury, spinal cord injury or nerve injury. The problem may start in another body system that interacts with the nervous system. For example, cerebrovascular disorders involve brain injury due to problems with the blood vessels (cardiovascular system) supplying the brain; autoimmune disorders involve damage caused by the body's own immune system; lysosomal storage diseases such as Niemann-Pick disease can lead to neurological deterioration. The National Institutes of Health recommend considering the evaluation of an underlying celiac disease in people with unexplained neurological symptoms, particularly peripheral neuropathy or ataxia.
In a substantial minority of cases of neurological symptoms, no neural cause can be identified using current testing procedures, and such "idiopathic" conditions can invite different theories about what is occurring.
The American College of Rheumatology has outlined 19 syndromes that are seen in NPSLE. These syndromes encompass disorders of the central and peripheral nervous systems:
- Aseptic meningitis
- Cerebrovascular disease
- Demyelinating syndrome
- Headache
- Movement disorder
- Myelopathy
- Seizure disorders
- Acute confusional state
- Anxiety disorder
- Cognitive dysfunction
- Mood disorder
- Psychosis
- Acute inflammatory demyelinating polyradiculoneuropathy
- Autonomic disorder
- Mononeuropathy (single/multiplex)
- Myasthenia gravis
- Cranial neuropathy
- Plexopathy
- Polyneuropathy
Each of the 19 syndromes are also stand-alone diagnoses, which can occur with or without lupus.
The majority of cases involve the central nervous system (CNS), which consists of the brain and spinal cord. The CNS syndromes can be subcategorized as either focal or diffuse. The focal syndromes are neurological, while the diffuse syndromes are psychiatric in nature. The most common CNS syndromes are headache and mood disorder.
Though neuropsychiatric lupus is sometimes referred to as "CNS lupus", it can also affect the peripheral nervous system (PNS). Between 10-15% of people with NPSLE have PNS involvement. Mononeuropathy and polyneuropathy are the most common PNS syndromes.
Infectious diseases are transmitted in several ways. Some of these infections may affect the brain or spinal cord directly. Generally, an infection is a disease that is caused by the invasion of a microorganism or virus.
Prognosis depends on the condition itself. Some conditions such as multiple sclerosis depend on the subtype of the disease and various attributes of the patient such as age, sex, initial symptoms and the degree of disability the patient experiences. Life expectancy in Multiple sclerosis patients is 5 to 10 years lower than unaffected people. MS is an inflammatory demyelinating disease of the
central nervous system (CNS) that develops in genetically susceptible individuals after exposure to unknown environmental trigger(s). The bases for MS are unknown but are strongly suspected to involve immune reactions against autoantigens, particularly myelin proteins. The most accepted hypothesis is that dialogue between T-cell receptors and myelin antigens leads to an immune attack on the myelin-oligodendrocyte complex. These interactions between active T cells and myelin antigens provoke a massive destructive inflammatory response and promotes continuing proliferation of T and B cells and macrophage activation, which sustains secretion of inflammatory mediators. Other conditions such as central pontine myelinolysis have about a third of patients recover and the other two thirds experience varying degrees of disability. There are cases, such as transverse myelitis where the patient can begin recovery as early as 2 to 12 weeks after the onset of the condition.
The clinical features and course of the condition, the associated auto-antibodies against relevant antigens, and the response to treatment, all suggest that Bickerstaff brainstem encephalitis is an autoimmune disease. However, each of these criteria fails to fit a substantial proportion of patients, and there is no single test or feature which is diagnostic of Bickerstaff brainstem encephalitis. It is therefore possible that a proportion of cases are due to other causes, such as infection or lymphoma, but remain undiagnosed. It is also possible that there is more than one autoimmune disease that can cause an illness which would currently be diagnosed as Bickerstaff's. There is certainly overlap between Guillain–Barré syndrome, Miller Fisher syndrome and Bickerstaff brainstem encephalitis, as well as other conditions associated with anti-ganglioside antibodies such as chronic ophthalmoplegia with anti-GQ1b antibody.
and the pharyngo-cervico-brachial variant of GBS.
People whose condition was caused by a recent viral infection should make a full recovery without treatment in a few months. Fine motor skills, such as handwriting, typically have to be practised in order to restore them to their former ability. In more serious cases, strokes, bleeding or infections may sometimes cause permanent symptoms.
Neuropsychiatric systemic lupus erythematosus or NPSLE refers to the neurological and psychiatric manifestations of systemic lupus erythematosus. SLE is a disease in which the immune system attacks the body's own cells and tissues. It can affect various organs or systems of the body. It is estimated that over half of people with SLE have neuropsychiatric involvement.
A stroke is an interruption of the blood supply to the brain. Approximately every 40 seconds, someone in the US has a stroke. This is can happen when a blood vessel is blocked by a blood clot or when a blood vessel ruptures, causing blood to leak to the brain. If the brain cannot get enough oxygen and blood, brain cells can die, leading to permanent damage.
Primary autonomic failure (also called primary dysautonomia) refers to a category of dysautonomias -- conditions in which the autonomic nervous system does not function properly.
In primary dysautonomias, the autonomic dysfunction occurs as a primary condition (as opposed to resulting from another disease). Autonomic failure is categorized as "primary" when believed to result from a chronic condition characterized by degeneration of the autonomic nervous system, or where autonomic failure is the predominant symptom and its cause is unknown.
Such "primary" dysautonomias are distinguished from secondary dysautonomias, where the dysfunction of the autonomic nervous system is believed to be caused by another disease (e.g. diabetes).
Diseases categorized as primary autonomic failure usually include pure autonomic failure and multiple system atrophy. Many scientists also categorize Parkinson disease and familial dysautonomia as "primary".
A neurological disorder is any disorder of the nervous system. Structural, biochemical or electrical abnormalities in the brain, spinal cord or other nerves can result in a range of symptoms. Examples of symptoms include paralysis, muscle weakness, poor coordination, loss of sensation, seizures, confusion, pain and altered levels of consciousness. There are many recognized neurological disorders, some relatively common, but many rare. They may be assessed by neurological examination, and studied and treated within the specialities of neurology and clinical neuropsychology.
Interventions for neurological disorders include preventative measures, lifestyle changes, physiotherapy or other therapy, neurorehabilitation, pain management, medication, or operations performed by neurosurgeons. The World Health Organization estimated in 2006 that neurological disorders and their sequelae (direct consequences) affect as many as one billion people worldwide, and identified health inequalities and social stigma/discrimination as major factors contributing to the associated disability and suffering.
There are no currently known causes of this disease. There are studies currently proposing several theories of the causes which include inflammation of the adipose tissue, nervous system malfunction and endocrine malfunction. None of the theories that are currently proposed have been found viable. Since little is known about Dercum's disease, there are currently no known modes of prevention. Some hypotheses state that maintaining a healthy weight and diet can help prevent Dercum's although it has not been proven.
Dercum's disease can affect people of any gender and of any age. The majority of cases are linked to women between the ages of 45 and 60, who are overweight and postmenopausal. Due to the difficulty of diagnosis of this disease, many cases are underreported or misdiagnosed and it is difficult to understand what part of the population is affected by it the most.
Most patients reported in the literature have been given treatments suitable for autoimmune neurological diseases, such as corticosteroids, plasmapheresis and/or intravenous immunoglobulin, and most have made a good recovery. The condition is too rare for controlled trials to have been undertaken.
Dysautonomia may be due to inherited or degenerative neurologic diseases (primary dysautonomia) or it may occur due to injury of the autonomic nervous system from an acquired disorder (secondary dysautonomia). The most common causes of dysautonomia include
In the sympathetic nervous system (SNS), predominant dysautonomia is common along with fibromyalgia, chronic fatigue syndrome, irritable bowel syndrome, and interstitial cystitis, raising the possibility that such dysautonomia could be their common clustering underlying pathogenesis.
In addition to sometimes being a symptom of dysautonomia, anxiety can sometimes physically manifest symptoms resembling autonomic dysfunction. A thorough investigation ruling out physiological causes is crucial, but in cases where relevant tests are performed and no causes are found or symptoms do not match any known disorders, a primary anxiety disorder is possible, but should not be presumed. For such patients, the anxiety sensitivity index may have better predictivity for anxiety disorders, while the Beck anxiety inventory may misleadingly suggest anxiety for patients with dysautonomia.
Autonomic neuropathy (also AN or AAN) is a form of polyneuropathy that affects the non-voluntary, non-sensory nervous system (i.e., the autonomic nervous system), affecting mostly the internal organs such as the bladder muscles, the cardiovascular system, the digestive tract, and the genital organs. These nerves are not under a person's conscious control and function automatically. Autonomic nerve fibers form large collections in the thorax, abdomen, and pelvis outside the spinal cord. They have connections with the spinal cord and ultimately the brain, however. Most commonly autonomic neuropathy is seen in persons with long-standing diabetes mellitus type 1 and 2. In most—but not all—cases, autonomic neuropathy occurs alongside other forms of neuropathy, such as sensory neuropathy.
Autonomic neuropathy is one cause of malfunction of the autonomic nervous system (referred to as dysautonomia), but not the only one; some conditions affecting the brain or spinal cord also may cause autonomic dysfunction, such as multiple system atrophy, and therefore, may cause similar symptoms to autonomic neuropathy.
An initial comprehensive study of 24 known cases was conducted by multiple doctors from various disciplines at the Mayo Clinic. They identified the cause of this neurological disease to be occupational exposure to aerosolized pig neural tissue. Investigators from the Minnesota Department of Health (MDH) simultaneously determined that the 70 ppsi pressure used to liquefy and extract the pig brains caused the aerosolization of the pig neural tissue, sending it into the air in a fine mist. The workers closest in proximity to the "head" table, the area in the plant where high pressured air was used to evacuate the brain tissue from the pig's skull, were the most likely to be affected. The aerosolized mist was inhaled and readily absorbed into the workers' mucus membranes. The pig neural tissue was recognized by their systems as foreign and an immune response was initiated. The pig antigen was found most prominently in the nerve roots of the spine which were also swollen. Researchers determined that the irritation was due to the voltage-gated potassium channels being blocked. They identified 125 1-α-dendrotoxin as the antagonist that binds to and blocks the channels, causing an intracellular build-up of potassium ions which causes inflammation and irritation, and consequently, hyper-excitability in the peripheral nervous system. It is this hyper-excitability that leads to the tingling, numbness, pain, and weakness.
Researchers from the Mayo Clinic developed a mouse model that received twice daily liquefied pig neural tissue intranasally to replicate the symptoms that the workers were experiencing. Physiological testing indicated signature antibodies in the mouse model at 100% in potassium channel antibodies and myelin basic antibodies, and 91% in calcium channel antibodies. This model allowed the researchers to decipher what was causing these neurological symptoms. It was found that the potassium channels were being blocked so that inflammation was occurring at the nerve root and causing hyper-excitability down the peripheral nerves.
Over 40 laboratory tests were initially conducted to rule out various pathogens and environmental toxins. These tests were used to try to identify potential viruses carried by humans, pigs, or both, including rotoviruses, adenoviruses, hepatitis A, and hepatitis E. They also tried to identify bacteria such as salmonella and escherichia coli (e. coli), and parasites such as Giardia and cryptosporidium that could be causing the symptoms. All were ruled out.
Neurodegenerative diseases were considered specifically because of the similarity of symptoms and animal involvement thus included investigation of prion associated diseases such as bovine spongiform encephalopathy (BSE), chronic wasting disease (CWD), and variant Creutzfeldt–Jakob disease (vCJD). These all have highly transmissible pathogenic agents that induce brain damage. Since no pathogenic agent had been found, these diseases were ruled out as being related.
Next two very similar neuropathies were ruled out. Guillain–Barré syndrome (GBS) induces an acute autoimmune response which affects the Schwann cells in the peripheral nervous system. GBS is usually triggered by an infection that causes weakness and tingling that may lead to muscle loss. This condition may be life-threatening if muscle atrophy ascends to affect the pulmonary or cardiac systems. So far, no infectious agents have been found that relate to the current disease, progressive infammatory neuropathy. They looked at chronic inflammatory demyelinating polyneuropathy (CIDP) which is characterized by progressive weakness and sensory impairment in the arms and legs. Damage occurs to the myelin sheath in the peripheral nervous system. As doctors at the Mayo Clinic were beginning to note, the problem they were seeing in progressive inflammatory neuropathy was occurring in the spinal nerve roots.
Anti-MAG Peripheral Neuropathy is a specific type of peripheral neuropathy in which the person’s own immune system attacks cells that are specific in maintaining a healthy nervous system. As these cells are destroyed by antibodies, the nerve cells in the surrounding region begin to lose function and create many problems in both sensory and motor function. Specifically, antibodies against myelin-associated glycoprotein (MAG) damage Schwann cells. While the disorder occurs in only 10% of those afflicted with peripheral neuropathy, people afflicted have symptoms such as muscle weakness, sensory problems, and other motor deficits usually starting in the form of a tremor of the hands or trouble walking. There are, however, multiple treatments that range from simple exercises in order to build strength to targeted drug treatments that have been shown to improve function in people with this type of peripheral neuropathy.
Dercum's disease most commonly appears between the ages of 35 and 50 years of age. It is five to thirty times more common in women than in men. Originally, Dercum proposed that the condition mainly affects postmenopausal women. However, a 2007 survey has revealed that 85.7 percent of the included patients developed Dercum's disease before menopause. The prevalence of Dercum's disease has not yet been exactly established.
Familial dysautonomia is seen almost exclusively in Ashkenazi Jews and is inherited in an autosomal recessive fashion. Both parents must be carriers in order for a child to be affected. The carrier frequency in Jewish individuals of Eastern European (Ashkenazi) ancestry is about 1/30, while the carrier frequency in non-Jewish individuals is unknown. If both parents are carriers, there is a one in four, or 25%, chance with each pregnancy for an affected child. Genetic counseling and genetic testing is recommended for families who may be carriers of familial dysautonomia.
Worldwide, there have been approximately 600 diagnoses recorded since discovery of the disease, with approximately 350 of them still living.