Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most often the radiculopathy found in the patients are located in the cervical spine, most commonly affecting C6-C8 spinal nerves.
Certain injuries can also lead to radiculopathy. These injuries include lifting heavy objects improperly or suffering from a minor trauma such as a car accident. Less common causes of radiculopathy include injury caused by tumor (which can compress nerve roots locally) and diabetes (which can effectively cause ischemia or lack of blood flow to nerves).
Radiculopathy is a mechanical compression of a nerve root usually at the exit foramen or lateral recess. It may be secondary to degenerative disc disease, osteoarthritis, facet joint degeneration/hypertrophy, ligamentous hypertrophy, spondylolisthesis, or a combination of these factors. Rarer causes of radiculopathy may include radiation, diabetes mellitus, neoplastic disease, or any meningeal-based disease process. Second-stage Lyme meningitis resembles aseptic meningitis and is often associated with radiculopathies.
Surgery may be useful in those with a herniated disc that is causing significant pain radiating into the leg, significant leg weakness, bladder problems, or loss of bowel control. Discectomy (the partial removal of a disc that is causing leg pain) can provide pain relief sooner than nonsurgical treatments. Discectomy has better outcomes at one year but not at four to ten years. The less invasive microdiscectomy has not been shown to result in a significantly different outcome than regular discectomy with respect to pain. It might however have less risk of infection.
The presence of cauda equina syndrome (in which there is incontinence, weakness and genital numbness) is considered a medical emergency requiring immediate attention and possibly surgical decompression. Regarding the role of surgery for failed medical therapy in people without a significant neurological deficit, a Cochrane review concluded that "limited evidence is now available to support some aspects of surgical practice".
Disc herniation can occur in any disc in the spine, but the two most common forms are lumbar disc herniation and cervical disc herniation. The former is the most common, causing lower back pain (lumbago) and often leg pain as well, in which case it is commonly referred to as sciatica. Lumbar disc herniation occurs 15 times more often than cervical (neck) disc herniation, and it is one of the most common causes of lower back pain. The cervical discs are affected 8% of the time and the upper-to-mid-back (thoracic) discs only 1–2% of the time.
The following locations have no discs and are therefore exempt from the risk of disc herniation: the upper two cervical intervertebral spaces, the sacrum, and the coccyx. Most disc herniations occur when a person is in their thirties or forties when the nucleus pulposus is still a gelatin-like substance. With age the nucleus pulposus changes ("dries out") and the risk of herniation is greatly reduced. After age 50 or 60, osteoarthritic degeneration (spondylosis) or spinal stenosis are more likely causes of low back pain or leg pain.
- 4.8% males and 2.5% females older than 35 experience sciatica during their lifetime.
- Of all individuals, 60% to 80% experience back pain during their lifetime.
- In 14%, pain lasts more than 2 weeks.
- Generally, males have a slightly higher incidence than females.
The site and type of brachial plexus injury determine the prognosis. Avulsion and rupture injuries require timely surgical intervention for any chance of recovery. For milder injuries involving buildup of scar tissue and for neurapraxia, the potential for improvement varies, but there is a fair prognosis for spontaneous recovery, with a 90–100% return of function.
There are several conditions and syndromes that can affect the cervical spine and they all vary due to the difference in place and type of injury.
- Rheumatoid arthritis Those infected with rheumatoid arthritis in their cervical spine are known to have neurological deficits. It results in occipital pain and myelopathy.
- Occipito-cervical junction This disorder may result from rheumatoid arthritis, causing the hyper-mobility of the connection between the neck and head, resulting in paralysis or pain.
- Cerebrovascular disease Cerebrovascular disease is a type of cervical spine disorder that can cause tetraplegia.
- Subaxial cervical spine
- Atlanto-axial joint
Radicular pain, or radiculitis, is pain "radiated" along the dermatome (sensory distribution) of a nerve due to inflammation or other irritation of the nerve root (radiculopathy) at its connection to the spinal column. A common form of radiculitis is sciatica – radicular pain that radiates along the sciatic nerve from the lower spine to the lower back, gluteal muscles, back of the upper thigh, calf, and foot as often secondary to nerve root irritation from a spinal disc herniation or from osteophytes in the lumbar region of the spine.
About 50% of women experience low back pain during pregnancy. Some studies have suggested women who have experienced back pain before pregnancy are at a higher risk of having back pain during pregnancy. It may be severe enough to cause significant pain and disability in up to a third of pregnant women. Back pain typically begins at around 18 weeks gestation, and peaks between 24 and 36 weeks gestation. Approximately 16% of women who experienced back pain during pregnancy report continued back pain years after pregnancy, indicating those with significant back pain are at greater risk of back pain following pregnancy.
Biomechanical factors of pregnancy shown to be associated with back pain include increased curvature of the lower back, or lumbar lordosis, to support the added weight on the abdomen. Also, a hormone called relaxin is released during pregnancy that softens the structural tissues in the pelvis and lower back to prepare for vaginal delivery. This softening and increased flexibility of the ligaments and joints in the lower back can result in pain. Back pain in pregnancy is often accompanied by radicular symptoms, suggested to be caused by the fetus pressing on the sacral plexus and lumbar plexus in the pelvis.
Typical factors aggravating the back pain of pregnancy include standing, sitting, forward bending, lifting, and walking. Back pain in pregnancy may also be characterized by pain radiating into the thigh and buttocks, night-time pain severe enough to wake the patient, pain that is increased during the night-time, or pain that is increased during the day-time.
Local heat, acetaminophen (paracetamol), and massage can be used to help relieve the pain. Avoiding standing for prolonged periods of time is also suggested.
Brachial plexus injury is found in both children and adults, but there is a difference between children and adults with BPI.
Obesity, sedentary lifestyle, and lack of exercise can increase a person's risk of back pain. People who smoke are more likely to experience back pain than others. Poor posture and weight gain in pregnancy are also risk factors for back pain. In general, fatigue can worsen pain.
A few studies suggest that psychosocial factors such as on-the-job stress and dysfunctional family relationships may correlate more closely with back pain than structural abnormalities revealed in X-rays and other medical imaging scans.
Cervical spine disorders are illnesses that affect the cervical spine, which is made up of the upper first seven vertebrae, encasing and shielding the spinal cord. This fragment of the spine starts from the region above the shoulder blades and ends by supporting and connecting the Skull.
The cervical spine contains many different anatomic compositions, including muscles, bones, ligaments, and joints. All of these structures have nerve endings that can detect painful problems when they occur. Such nerves supply muscular control and sensations to the skull and arms while correspondingly providing our bodies with flexibility and motion. However, if the cervical spine is injured it can cause many minor or traumatic problems, and although these injuries vary specifically they are more commonly known as "cervical spine disorders" as a whole.
A nerve may be compressed by prolonged or repeated external force, such as sitting with one's arm over the back of a chair (radial nerve), frequently resting one's elbows on a table (ulnar nerve), or an ill-fitting cast or brace on the leg (peroneal nerve). Part of the patient's body can cause the compression and the term "entrapment neuropathy" is used particularly in this situation. The offending structure may be a well-defined lesion such as a tumour (for example a lipoma, neurofibroma or metastasis), a ganglion cyst or a haematoma. Alternatively, there may be expansion of the tissues around a nerve in a space where there is little room for this to occur, as is often the case in carpal tunnel syndrome. This may be due to weight gain or peripheral oedema (especially in pregnancy), or to a specific condition such as acromegaly, hypothyroidism or scleroderma and psoriasis.
Some conditions cause nerves to be particularly susceptible to compression. These include diabetes, in which the blood supply to the nerves is already compromised, rendering the nerve more sensitive to minor degrees of compression. The genetic condition HNPP is a much rarer cause.
External pressure reduces flow in the vessels supplying the nerve with blood (the vasa nervorum). This causes local ischaemia, which has an immediate effect on the ability of the nerve axons to transmit action potentials. As the compression becomes more severe over time, focal demyelination occurs, followed by axonal damage and finally scarring.
Like many other joints throughout the human body, facets can experience natural degeneration from constant use. Over time, the cartilage within the joints can naturally begin to wear out, allowing it to become thin or disappear entirely which, in turn, allows the conjoining vertebrae to rub directly against one another with little or no lubricant or separation. A result of this rubbing is often swelling, inflammation or other painful symptoms.
Over time, the body will naturally respond to the instability within the spine by developing bone spurs, thickened ligaments or even cysts that can press up against or pinch the sensitive nerve roots exiting the spinal column.
While primarily caused through natural wear and tear, advanced facet syndrome can also occur as a result of injury to the spine, degenerative disease or lifestyle choices. These causes can include:
- An unexpected, traumatic event such as a car accident, significant fall or high impact sports injury.
- Osteoarthritis
- Spondylolisthesis
- Obesity
- Smoking
- Malnutrition
- Lack of physical exercise or daily activity
An inheritable gene variation may cause increased susceptibility. People with a variation in a gene that encodes the cartilage intermediate-layer protein (CILP) were 1.6 times more likely to have the disease than persons without the variation. CILP is a normal component of disc tissue. The gene variant was hypothesized to disrupt normal building and maintenance of cartilage. However, this association was not replicated in a follow-up study of Finnish and Chinese individuals.
The most common forms are cervical spinal stenosis, which are at the level of the neck, and lumbar spinal stenosis, at the level of the lower back. Thoracic spinal stenosis, at the level of the mid-back, is much less common.
In lumbar stenosis, the spinal nerve roots in the lower back are compressed which can lead to symptoms of sciatica (tingling, weakness, or numbness that radiates from the low back and into the buttocks and legs).
Cervical spinal stenosis can be far more dangerous by compressing the spinal cord. Cervical canal stenosis may lead to myelopathy, a serious conditions causing symptoms including major body weakness and paralysis. Such severe spinal stenosis symptoms are virtually absent in lumbar stenosis, however, as the spinal cord terminates at the top end of the adult lumbar spine, with only nerve roots (cauda equina) continuing further down. Cervical spinal stenosis is a condition involving narrowing of the spinal canal at the level of the neck. It is frequently due to chronic degeneration, but may also be congenital or traumatic. Treatment frequently is surgical.
55% of facet syndrome cases occur in cervical vertebrae, and 31% in lumbar. Facet syndrome can progress to spinal osteoarthritis, which is known as spondylosis. Pathology of the C1-C2 (atlantoaxial) joint, the most mobile of all vertebral segments, accounts for 4% of all spondylosis.
Spinal stenosis is an abnormal narrowing of the spinal canal or neural foramen that results in pressure on the spinal cord or nerve roots. Symptoms may include pain, numbness, or weakness in the arms or legs. Symptoms are typically gradual in onset and improve with bending forwards. Severe symptoms may include loss of bladder control, loss of bowel control, or sexual dysfunction.
Causes may include osteoarthritis, rheumatoid arthritis, spinal tumors, trauma, Paget's disease of the bone, scoliosis, spondylolisthesis, and the genetic condition achondroplasia. It can be classified by the part of the spine affected into cervical, thoracic, and lumbar stenosis. Lumbar stenosis is the most common followed by cervical stenosis. Diagnosis is generally based on symptoms and medical imaging.
Treatment may involve medications, bracing, or surgery. Medications may include NSAIDs, acetaminophen, or steroid injections. Stretching and strengthening exercises may also be useful. Limiting certain activities may be recommended. Surgery is typically only done if other treatments are not affected, with the usual procedure being a decompressive laminectomy.
Spinal stenosis occurs in as many as 8% of people. It occurs most commonly in people over the age of 50. Males and females are affected equally commonly. The first modern description of the condition is from 1803 by Antoine Portal. Evidence of the condition, however, dates back to Ancient Egypt.
Spondylosis is caused from years of constant abnormal pressure, from joint subluxation, sports, or poor posture, being placed on the vertebrae, and the discs between them. The abnormal stress causes the body to form new bone in order to compensate for the new weight distribution. This abnormal weight bearing from bone displacement will cause spondylosis to occur. Poor postures and loss of the normal spinal curves can lead to spondylosis as well. Spondylosis can affect a person at any age; however, older people are more susceptible.
Cervical spinal stenosis is a bone disease involving the narrowing of the spinal canal at the level of the neck. It is frequently due to chronic degeneration, but may also be congenital. Treatment is frequently surgical.
Cervical spinal stenosis is one of the most common forms of spinal stenosis, along with lumbar spinal stenosis (which occurs at the level of the lower back instead of in the neck). Thoracic spinal stenosis, at the level of the mid-back, is much less common. Cervical spinal stenosis can be far more dangerous by compressing the spinal cord. Cervical canal stenosis may lead to serious symptoms such as major body weakness and paralysis. Such severe spinal stenosis symptoms are virtually absent in lumbar stenosis, however, as the spinal cord terminates at the top end of the adult lumbar spine, with only nerve roots (cauda equina) continuing further down. Cervical spinal stenosis is a condition involving narrowing of the spinal canal at the level of the neck. It is frequently due to chronic degeneration, but may also be congenital or traumatic. Treatment frequently is surgical.
Initial treatment in lumbar disc disease is one or two days of bedrest (although growing number of studies shows that it makes little difference) and pain relieving medications. In cases with ongoing pain despite conservative treatments, a surgical operation that will remove the compressing disc material, a microdiscectomy or discectomy may be recommended to treat a lumbar disc herniation.
Spondylosis is a broad term meaning degeneration of the spinal column from any cause. In the more narrow sense it refers to spinal osteoarthrosis, the age-related wear and tear of the spinal column, which is the most common cause of spondylosis. The degenerative process in osteoarthritis chiefly affects the vertebral bodies, the neural foramina and the facet joints (facet syndrome). If severe, it may cause pressure on the spinal cord or nerve roots with subsequent sensory or motor disturbances, such as pain, paresthesia, imbalance, and muscle weakness in the limbs.
When the space between two adjacent vertebrae narrows, compression of a nerve root emerging from the spinal cord may result in radiculopathy (sensory and motor disturbances, such as severe pain in the neck, shoulder, arm, back, or leg, accompanied by muscle weakness). Less commonly, direct pressure on the spinal cord (typically in the cervical spine) may result in myelopathy, characterized by global weakness, gait dysfunction, loss of balance, and loss of bowel or bladder control. The patient may experience shocks (paresthesia) in hands and legs because of nerve compression and lack of blood flow. If vertebrae of the neck are involved it is labelled cervical spondylosis. Lower back spondylosis is labeled lumbar spondylosis. The term is from Ancient Greek σπόνδυλος "spóndylos", "a vertebra", in plural "vertebrae – the backbone".
Claudication is a medical term usually referring to impairment in walking, or pain, discomfort, numbness, or tiredness in the legs that occurs during walking or standing and is relieved by rest. The perceived level of pain from claudication can be mild to extremely severe. Claudication is most common in the calves but it can also affect the feet, thighs, hips, buttocks, or arms. The word "claudication" comes from the Latin "claudicare" meaning 'to limp'.
Claudication that appears after a short amount of walking may sometimes be described by US medical professionals by the number of typical city street blocks that the patient can walk before the onset of claudication. Thus, "one-block claudication" appears after walking one block, "two-block claudication" appears after walking two blocks, etc. The term "block" would be understood more exactly locally but is on the order of 100 metres.
Spinal or neurogenic claudication is not due to lack of blood supply, but rather it is caused by nerve root compression or stenosis of the spinal canal, usually from a degenerative spine, most often at the "L4-L5" or "L5-S1" level. This may result from many factors, including bulging disc, herniated disc or fragments from previously herniated discs (post-operative), scar tissue from previous surgeries, osteophytes (bone spurs that jut out from the edge of a vertebra into the foramen, the opening through which the nerve root passes). In most cases neurogenic claudication is bilateral, i.e. symmetrical.
Foot drop is a gait abnormality in which the dropping of the forefoot happens due to weakness, irritation or damage to the common fibular nerve including the sciatic nerve, or paralysis of the muscles in the anterior portion of the lower leg. It is usually a symptom of a greater problem, not a disease in itself. Foot drop is characterized by inability or impaired ability to raise the toes or raise the foot from the ankle (dorsiflexion). Foot drop may be temporary or permanent, depending on the extent of muscle weakness or paralysis and it can occur in one or both feet. In walking, the raised leg is slightly bent at the knee to prevent the foot from dragging along the ground.
Foot drop can be caused by nerve damage alone or by muscle or spinal cord trauma, abnormal anatomy, toxins, or disease. Toxins include organophosphate compounds which have been used as pesticides and as chemical agents in warfare. The poison can lead to further damage to the body such as a neurodegenerative disorder called organophosphorus induced delayed polyneuropathy. This disorder causes loss of function of the motor and sensory neural pathways. In this case, foot drop could be the result of paralysis due to neurological dysfunction. Diseases that can cause foot drop include trauma to the posterolateral neck of fibula, stroke, amyotrophic lateral sclerosis, muscular dystrophy, poliomyelitis, Charcot Marie Tooth disease, multiple sclerosis, cerebral palsy, hereditary spastic paraplegia, Guillain–Barré syndrome, and Friedreich's ataxia. It may also occur as a result of hip replacement surgery or knee ligament reconstruction surgery.