Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The treatment of choice for both benign and malignant SFT is complete "en bloc" surgical resection.
Prognosis in benign SFTs is excellent. About 8% will recur after first resection, with the recurrence usually cured after additional surgery.
The prognosis in malignant SFTs is much more guarded. Approximately 63% of patients will have a recurrence of their tumor, of which more than half will succumb to disease progression within 2 years. Adjuvant chemotherapy and/or radiotherapy in malignant SFT remains controversial.
Recurrent somatic fusions of the two genes, NGFI-A–binding protein 2 (NAB2) and STAT6, located at chromosomal region 12q13, have been identified in solitary fibrous tumors.
Asbestos can cause lung cancer that is identical to lung cancer from other causes. Exposure to asbestos is associated with all major histological types of lung carcinoma (adenocarcinoma, squamous cell carcinoma, large-cell carcinoma and small-cell carcinoma). The latency period between exposure and development of lung cancer is 20 to 30 years. It is estimated that 3%-8% of all lung cancers are related to asbestos. The risk of developing lung cancer depends on the level, duration, and frequency of asbestos exposure (cumulative exposure). Smoking and individual susceptibility are other contributing factors towards lung cancer. Smokers who have been exposed to asbestos are at far greater risk of lung cancer. Smoking and asbestos exposure have a multiplicative (synergistic) effect on the risk of lung cancer. Symptoms include chronic cough, chest pain, breathlessness, haemoptysis (coughing up blood), wheezing or hoarseness of the voice, weight loss and fatigue. Treatment involves surgical removal of the cancer, chemotherapy, radiotherapy, or a combination of these (multimodality treatment). Prognosis is generally poor unless the cancer is detected in its early stages. Out of all patients diagnosed with lung cancer, only 15% survive for five years after diagnosis.
The goal of treatment of malignant pleural effusions is relief of breathlessness. Occasionally, treatment of the underlying cancer can cause resolution of the effusion. This may be the case with types of cancer that respond well to chemotherapy, such as small cell carcinoma or lymphoma. Simple aspiration of pleural fluid can relieve breathlessness rapidly but fluid and symptoms will usually recur within a couple of weeks. For this reason, more permanent treatments are usually used to prevent fluid recurrence. Standard treatment involves chest tube insertion and pleurodesis. However, this treatment requires an inpatient stay of approximately 2–7 days, can be painful and has a significant failure rate. This has led to the development of tunneled pleural catheters (e.g., Pleurx Catheters), which allow outpatient treatment of effusions.
A solid pseudopapillary tumour (also known as solid pseudopapillary neoplasm or, more formally, solid pseudopapillary tumour/neoplasm of the pancreas) is a low-grade malignant neoplasm of the pancreas of architecture that typically afflicts young women.
Malignant germ cell tumors of the mediastinum are uncommon, representing only 3 to 10% of tumors originating in the mediastinum. They are much less common than germ cell tumors arising in the testes, and account for only 1 to 5% of all germ cell neoplasms.
Syndromes associated with mediastinal germ cell tumors include Hematologic Neoplasia and Klinefelter's syndrome.
SCTC exhibits a highly aggressive phenotype, thus prognosis of that malignancy is extremely poor. The overall survival is less than 1 year in most of cases.
Tumor-like disorders of the lung pleura are a group of conditions that on initial radiological studies might be confused with malignant lesions. Radiologists must be aware of these conditions in order to avoid misdiagnosing patients. Examples of such lesions are: pleural plaques, thoracic splenosis, catamenial pneumothorax, pleural pseudotumor, diffuse pleural thickening, diffuse pulmonary lymphangiomatosis and Erdheim-Chester Disease.
Acinic cell carcinoma of the lung is a very rare malignant neoplasm originating from bronchial glands. It is classified as a salivary gland-like carcinoma under the most widely used lung cancer classification system.
Malignant pleural effusion is a condition in which cancer causes an abnormal amount of fluid to collect between the thin layers of tissue (pleura) lining the outside of the lung and the wall of the chest cavity. Lung cancer and breast cancer account for about 50-65% of malignant pleural effusions. Other common causes include pleural mesothelioma and lymphoma.
Solid pseudopapillary tumours are typically round, well-demarcated, measuring 2–17 cm in diameter (average 8 cm), with solid and cystic areas with hemorrhage on cut sections.
Ectopic endometrial tissue reaches the pleural space of the lung or the right hemi-diaphragmatic region and erodes the visceral pleura, causing the formation of a spontaneous pneumothorax. The condition is often cyclical, due to its associations with the beginning of the menstrual cycle.
Affected persons usually present with recurrent spontaneous pneumothorax associated with the onset of the menstrual cycle. Additionally, chest/scapular pain and/or evidence of endometriosis in the abdominopelvic cavity are other manifestations.
On radiological studies, pneumothorax is visualized using conventional chest x-rays and CT scans. In 90% of the cases, the pneumothorax is located on the right side. In some cases, small nodules can be seen in the pleura using CT scans. Confirmation can be done using video assisted thoracoscopic surgery (VATS).
Treatment for the pneumothorax is with chest tube placement. As for the ectopic endometrial tissue, therapy with gonadotropin-releasing–hormone or resection of the lesions can improve symptoms.
Pleural tumors may be benign (i.e. solitary fibromas) or malignant in nature. Pleural Mesothelioma is a type of malignant cancer associated with asbestos exposure.
- Mesothelial tumors: pleural malignant mesothelioma.
- Pleural sarcomas
- Pleural angiosarcoma
- Pleural desmoplastic small round cell tumor (pleural DSRCT)
- Pleural synovial sarcoma
- Pleural solitary fibrous tumor (pleural SFT)
- Smooth muscle tumors of the pleura
- Pleural carcinomas
- Pleural mucoepidermoid carcinoma
- Pleural pseudomesotheliomatous adenocarcinoma
When a pleural effusion has been determined to be exudative, additional evaluation is needed to determine its cause, and amylase, glucose, pH and cell counts should be measured.
- Red blood cell counts are elevated in cases of bloody effusions (for example after heart surgery or hemothorax from incomplete evacuation of blood).
- Amylase levels are elevated in cases of esophageal rupture, pancreatic pleural effusion, or cancer.
- Glucose is decreased with cancer, bacterial infections, or rheumatoid pleuritis.
- pH is low in empyema (<7.2) and may be low in cancer.
- If cancer is suspected, the pleural fluid is sent for cytology. If cytology is negative, and cancer is still suspected, either a thoracoscopy, or needle biopsy of the pleura may be performed.
- Gram staining and culture should also be done.
- If tuberculosis is possible, examination for "Mycobacterium tuberculosis" (either a Ziehl–Neelsen or Kinyoun stain, and mycobacterial cultures) should be done. A polymerase chain reaction for tuberculous DNA may be done, or adenosine deaminase or interferon gamma levels may also be checked.
The most common causes of exudative pleural effusions are bacterial pneumonia, cancer (with lung cancer, breast cancer, and lymphoma causing approximately 75% of all malignant pleural effusions), viral infection, and pulmonary embolism.
Another common cause is after heart surgery, when incompletely drained blood can lead to an inflammatory response that causes exudative pleural fluid.
Conditions associated with exudative pleural effusions:
- Parapneumonic effusion due to pneumonia
- Malignancy (either lung cancer or metastases to the pleura from elsewhere)
- Infection (empyema due to bacterial pneumonia)
- Trauma
- Pulmonary infarction
- Pulmonary embolism
- Autoimmune disorders
- Pancreatitis
- Ruptured esophagus (Boerhaave's syndrome)
- Rheumatoid pleurisy
- Drug-induced lupus
Mediastinal germ cell tumors are tumors that derive from germ cell rest remnants in the mediastinum. They most commonly occur in the gonad but occasionally elsewhere.
An odontogenic tumor is a neoplasm of the cells or tissues that initiate odontogenic processes.
Examples include:
- Adenomatoid odontogenic tumor
- Ameloblastoma, a type of odontogenic tumor involving ameloblasts
- Calcifying epithelial odontogenic tumor
- Keratocystic odontogenic tumor
- Odontogenic myxoma
- Odontoma
The most common causes of transudative pleural effusions in the United States are heart failure and cirrhosis. Nephrotic syndrome, leading to the loss of large amounts of albumin in urine and resultant low albumin levels in the blood and reduced colloid osmotic pressure, is another less common cause of pleural effusion. Pulmonary emboli were once thought to cause transudative effusions, but have been recently shown to be exudative.
The mechanism for the exudative pleural effusion in pulmonary thromboembolism is probably related to increased permeability of the capillaries in the lung, which results from the release of cytokines or inflammatory mediators (e.g. vascular endothelial growth factor) from the platelet-rich blood clots. The excessive interstitial lung fluid traverses the visceral pleura and accumulates in the pleural space.
Conditions associated with transudative pleural effusions include:
- Congestive heart failure
- Liver cirrhosis
- Severe hypoalbuminemia
- Nephrotic syndrome
- Acute atelectasis
- Myxedema
- Peritoneal dialysis
- Meigs' syndrome
- Obstructive uropathy
- End-stage kidney disease
Thoracic endometriosis affects women aged 15–54, who are between menarche and menopause. It can affect their qualify of life, with catamenial pneumothorax being the most common presentation.
Poorly differentiated thyroid carcinoma (PDTC) is malignant neoplasm of follicular cell origin showing intermediate histopathological patterns between differentiated and undifferentiated thyroid cancers.
Squamous-cell thyroid carcinoma (SCTC) is rare malignant neoplasm of thyroid gland which shows tumor cells with distinct squamous differentiation. The incidence of SCTC is less than 1% out of thyroid malignancies.
Most malignant vascular tumors are considered sarcomas, a major histological group of tumors, arising from transformed cells of mesenchymal origin.
- Hemangiosarcoma
- Hemangiopericytoma
- Kaposi's Sarcoma
- Hemangioblastoma
- Lymphangiosarcoma
Malignant mesothelioma is an aggressive and incurable tumour caused by asbestos arising from mesothelial cells of the pleura, peritoneum (the lining of the abdominal cavity) and rarely elsewhere. Pleural mesothelioma is the most common type of mesothelioma, representing about 75 percent of cases. Peritoneal mesothelioma is the second most common type, consisting of about 10 to 20 percent of cases. Mesothelioma appears from 20 to 50 years after the initial exposure to asbestos. The symptoms include shortness of breath, chronic chest pain, cough, and weight loss. Diagnosing mesothelioma is often difficult and can include physical examination, chest X-ray and lung function tests, followed by CT scan and MRI. A biopsy is needed to confirm a diagnosis of malignant mesothelioma. Mesothelioma has a poor prognosis, with most patients dying within 1 year of diagnosis. The treatment strategies include surgery, radiotherapy, chemotherapy or multimodality treatment. Several tumour biomarkers (soluble mesothelin-related protein (SMRP), osteopontin and fibulin3) have been evaluated for diagnostic purposes to allow early detection of this disease. Novel biomarkers such as volatile organic compounds measured in exhaled breath are also promising.
Vascular tissue neoplasms, like neoplasms of all tissues, are classified to benign and malignant ones, according to their biological behavior.
According to a Dutch source juvenile pilocytic astrocytoma occurs at a rate of 2 in 100,000 people. Most affected are children ages 5–14 years. According to the National Cancer Institute more than 80% of astrocytomas located in the cerebellum are low grade (pilocytic grade I) and often cystic; most of the remainder are diffuse grade II astrocytomas.
Tumors of the optic pathway account for 3.6-6% of pediatric brain tumors, 60% of which are juvenile pilocytic astrocytomas. Astrocytomas account for 50% of pediatric primary central nervous system tumors. About 80-85% of cerebellar astrocytomas are juvenile pilocytic astrocytomas.
Recent genetic studies of pilocytic astrocytomas show that some sporadic cases have gain in chromosome 7q34 involving the BRAF locus.
Intraductal papillary mucinous neoplasm (IPMN) is a type of tumor that can occur within the cells of the pancreatic duct. IPMN tumors produce mucus, and this mucus can form pancreatic cysts. Although intraductal papillary mucinous neoplasms are benign tumors, they can progress to pancreatic cancer. As such IPMN is viewed as a precancerous condition. Once an intraductal papillary mucinous neoplasm has been found, the management options include close monitoring and pre-emptive surgery.