Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The common routes of transmission for the disease-causing bacteria are fecal-oral, person-to-person sexual contact, ingestion of contaminated food (generally unpasteurized (raw) milk and undercooked or poorly handled poultry), and waterborne (i.e., through contaminated drinking water). Contact with contaminated poultry, livestock, or household pets, especially puppies, can also cause disease.
Animals farmed for meat are the main source of campylobacteriosis. A study published in PLoS Genetics (September 26, 2008) by researchers from Lancashire, England, and Chicago, Illinois, found that 97 percent of campylobacteriosis cases sampled in Lancashire were caused by bacteria typically found in chicken and livestock. In 57 percent of cases, the bacteria could be traced to chicken, and in 35 percent to cattle. Wild animal and environmental sources were accountable for just three percent of disease.
The infectious dose is 1000–10,000 bacteria (although ten to five hundred bacteria can be enough to infect humans). "Campylobacter" species are sensitive to hydrochloric acid in the stomach, and acid reduction treatment can reduce the amount of needed to cause disease.
Exposure to bacteria is often more common during travelling, and therefore campylobacteriosis is a common form of travelers' diarrhea.
In Germany, 90% of cases of infectious enteritis are caused by four pathogens, Norovirus, Rotavirus, "Campylobacter" and "Salmonella". Other common causes of infectious enteritis include bacteria such as "Shigella" and "E. coli," as well as viruses such as adenovirus, astrovirus and calicivirus. Other less common pathogens include "Bacillus cereus, Clostridium perfringens, Clostridium difficile" and "Staphylococcus aureus".
"Campylobacter jejuni" is one of the most common sources of infectious enteritis, and the most common bacterial pathogen found in 2 year old and smaller children with diarrhoea. It has been linked to consumption of contaminated water and food, most commonly poultry and milk. The disease tends to be less severe in developing countries, due to the constant exposure which people have with the antigen in the environment, leading to early development of antibodies.
Rotavirus is responsible for infecting 140 million people and causing 1 million deaths each year, mostly in children younger than 5 years. This makes it the most common cause of severe childhood diarrhoea and diarrhea-related deaths in the world. It selectively targets mature enterocytes in the small intestine, causing malabsorption, as well as inducing secretion of water. It has also been observed to cause villus ischemia, and increase intestinal motility. The net result of these changes is induced diarrhoea.
Enteritis necroticans is an often fatal illness, caused by β-toxin of "Clostridium perfringens". This causes inflammation and segments of necrosis throughout the gastrointestinal tract. It is most common in developing countries, however has also been documented in post-World War II Germany. Risk factors for enteritis necroticans include decreased trypsin activity, which prevent intestinal degradation of the toxin, and reduced intestinal motility, which increases likelihood of toxin accumulation.
The World Health Organization recommends the following:
- Food should be properly cooked and hot when served.
- Consume only pasteurized or boiled milk and milk products, never raw milk products.
- Make sure that ice is from safe water.
- If you are not sure of the safety of drinking water, boil it, or disinfect it with chemical disinfectant.
- Wash hands thoroughly and frequently with soap, especially after using the toilet and after contact with pets and farm animals.
- Wash fruits and vegetables thoroughly, especially if they are to be eaten raw. Peel fruits and vegetables whenever possible.
- Food handlers, professionals and at home, should observe hygienic rules during food preparation.
- Professional food handlers should immediately report to their employer any fever, diarrhea, vomiting or visible infected skin lesions.
Crohn's disease – also known as regional enteritis, it can occur along any surface of the gastrointestinal tract. In 40% of cases it is limited to the small intestine.
Coeliac disease – caused by an autoimmune reaction to gluten by genetically predisposed individuals.
Eosinophilic enteropathy – a condition where eosinophils build up in the gastrointestinal tract and blood vessels, leading to polyp formation, necrosis, inflammation and ulcers. It is most commonly seen in patients with a history of atopy, however is overall relatively uncommon.
Specific types of enterocolitis include:
- necrotizing enterocolitis (most common in premature infants)
- pseudomembranous enterocolitis (also called "Pseudomembranous colitis")
Enterocolitis or coloenteritis is an inflammation of the digestive tract, involving enteritis of the small intestine and colitis of the colon. It may be caused by various infections, with bacteria, viruses, fungi, parasites, or other causes. Common clinical manifestations of enterocolitis are frequent diarrheal defecations, with or without nausea, vomiting, abdominal pain, fever, chills, alteration of general condition. General manifestations are given by the dissemination of the infectious agent or its toxins throughout the body, or – most frequently – by significant losses of water and minerals, the consequence of diarrhea and vomiting.
Among the causal agents of acute enterocolitis are:
- bacteria: "Salmonella", "Shigella", "Escherichia coli", "Campylobacter" etc.;
- viruses: enteroviruses, rotaviruses, Norwalk virus, adenoviruses;
- fungi: candidiasis, especially in immunosuppressed patients or who have previously received prolonged antibiotic treatment;
- parasites: "Giardia lamblia" (with high frequency of infestation in the population, but not always with clinical manifestations), "Balantidium coli", "Blastocystis homnis", "Cryptosporidium" (diarrhea in people with immunosuppression), "Entamoeba histolytica" (produces the amebian dysentery, common in tropical areas).
"S. aureus" is an enterotoxin producer. Enterotoxins are chromosomally encoded exotoxins that are produced and secreted from several bacterial organisms. It is a heat stable toxin and is resistant to digestive protease. It is the ingestion of the toxin that causes the inflammation and swelling of the intestine.
Staphylococcal enteritis is an inflammation that is usually caused by eating or drinking substances contaminated with staph enterotoxin. The toxin, not the bacterium, settles in the small intestine and causes inflammation and swelling. This in turn can cause abdominal pain, cramping, dehydration, diarrhea and fever.
"Staphylococcus aureus" is a Gram-positive, facultative anaerobe, coccal (round shaped) bacteria that appears in grape-like clusters that can thrive in high salt and low water activity habitats. "S. aureus" bacteria can live on the skin which is one of the primary modes of transmission. "S. aureus" can cause a range of illnesses from minor skin infections to Staphylococcus aureus food poisoning enteritis. Since humans are the primary source, cross-contamination is the most common way the microorganism is introduced into foods. Foods at high risks are those prepared in large quantities.
Staphylococcus aureus is a true food poisoning organism. It produces a heat stable enterotoxin when allowed to grow for several hours in foods such as cream-filled baked goods, poultry meat, gravies, eggs, meat salads, puddings and vegetables. It is important to note that the toxins may be present in dangerous amounts in foods that have no signs of spoilage, such as a bad smell, any off color, odor, or textural or flavor change.
Enteritis is the inflammation of the small intestine. It is generally caused by eating or drinking substances that are contaminated with bacteria or viruses. The bacterium and/or toxin settles in the small intestine and cause inflammation and swelling. This in turn can cause abdominal pain, cramping, diarrhea, fever, and dehydration. There are other types of enteritis, the types include: bacterial gastroenteritis, "Campylobacter" enteritis, "E. coli" enteritis, radiation enteritis, "Salmonella" enteritis and "Shigella" enteritis.
The organism should be cultured and antibiotic sensitivity should be determined before treatment is started. Amoxycillin is usually effective in treating streptococcal infections.
Biosecurity protocols and good hygiene are important in preventing the disease.
Vaccination is available against "S. gallolyticus" and can also protect pigeons.
Streptococcus species are the cause of opportunistic infections in poultry leading to acute and chronic conditions in affected birds. Disease varies according to the Streptococcal species but common presentations include septicaemia, peritonitis, salpingitis and endocarditis.
Common species affecting poultry include:
- "S. gallinaceus" in broiler chickens
- "S. gallolyticus" which is a pathogen of racing pigeons and turkey poults
- "S. dysgalactiae" in broiler chickens
- "S. mutans" in geese
- "S. pluranimalium" in broiler chickens
- "S. equi subsp. zooepidemicus" in chickens and turkeys
- "S. suis" in psittacine birds
Histomoniasis (or histomonosis), also known as blackhead disease, is a commercially important disease of poultry, particularly of chickens and turkeys, due to parasitic infection of a protozoan, "Histomonas meleagridis". The protozoan is transmitted to the bird by the nematode parasite "Heterakis gallinarum". "H. meleagridis" resides within the eggs of "H. gallinarum", so birds ingest the parasites along with contaminated soil or food. Earthworms can also act as a paratenic host.
"Histomonas meleagridis" specifically infects the cecum and liver. Symptoms of the infection include depression, reduced appetite, poor growth, increased thirst, sulphur-yellow diarrhoea, listlessness, and dry, ruffled feathers. The head may become cyanotic (bluish in colour), hence the common name of the disease, blackhead disease; thus the name 'blackhead' is in all possibility a misnomer for discoloration. The disease carries a high mortality rate, and is particularly highly fatal in poultry, and less in other birds. Currently, no prescription drug is available to treat this disease.
Poultry (especially free-ranging) and wild birds commonly harbor a number of parasitic worms with only mild health problems from them. Turkeys are much more susceptible to getting blackhead than are chickens. Thus, chickens can be infected carriers for a long time because they are not removed or medicated by their owners, and they do not die or stop eating/defecating. "H. gallinarum" eggs can remain infective in soil for four years, a high risk of transmitting blackhead to turkeys remains if they graze areas with chicken feces in this time frame.
Histomoniasis is characterized by blackhead in birds. "H. meleagridis" is released in the cecum where the eggs of the nematode undergo larval development. The parasite migrates to the mucosa and submucosa where they cause extensive and severe necrosis of the tissue. Necrosis is initiated by inflammation and gradual ulceration, causing thickening of the cecal wall. The lesions are sometimes exacerbated by other pathogens such as "Escherichia coli" and coccidia. Histomonads then gain entry into small veins of the blood stream from the cecal lesions and migrate to the liver, causing focal necrosis. Turkeys are noted to be most susceptible to the symptoms in terms of mortality, sometimes approaching 100% of a flock. Diagnosis can be easily performed by necropsy of the fresh or preserved carcass. Unusual lesions have been observed in other organs of turkey such as the bursa of Fabricius, lungs, and kidneys.
Symptoms appear within 7–12 days after infection and include depression, reduced appetite, poor growth, increased thirst, sulphur-yellow diarrhoea, listlessness, drooping wings, and unkempt feathers. Young birds have a more acute disease and die within a few days after signs appear. Older birds may be sick for some time and become emaciated before death. The symptoms are highly fatal to turkeys, but effect less damage in chickens. However, outbreaks in chickens may result in high morbidity, moderate mortality, and extensive culling, leading to overall poor flock performance. Concurrence of "Salmonella typhmurium" and "E. coli" was found to cause high mortality in broiler chickens.
Fowl cholera is also called avian cholera, avian pasteurellosis, avian hemorrhagic septicemia.
It is the most common pasteurellosis of poultry. As the causative agent is "Pasteurella multocida", it is considered as a zoonosis.
Adult birds and old chickens are more susceptible. In parental flocks, cocks are far more susceptible than hens.
Besides chickens, the disease also concerns turkeys, ducks, geese, raptors, and canaries. Turkeys are particularly sensitive, with mortality ranging to 65%.
The recognition of this pathological condition is of ever increasing importance for differential diagnosis with avian influenza.
The most efficient treatment in breeding flocks or laying hens is individual intramuscular injections of a long-acting tetracycline, with the same antibiotic in drinking water, simultaneously. The mortality and clinical signs will stop within one week, but the bacteria might remain present in the flock.
Infectious necrotic hepatitis is a disease of large animals, especially sheep, caused by "Clostridium novyi" infection. The primary infection is intestinal and transferred by the faecal-oral route. Spores of "C. novyi" escape from the gut and lodge in the liver, where they remain dormant until some injury creates anaerobic conditions for them to germinate, causing local necrosis and widespread damage to the microvascular system, resulting in subcutaneous bleeding and blackening of the skin, hence the common name "black disease."
In order to control for the disease, the "Lymnaea" spp snails, which are the intermediate host for the liver flukes, need to be controlled. There are three ways that have proven most effective when controlling the snail populations:
- The first is by treating pastures and water channels with copper sulfate. This method is not always practical, because it is too expensive to treat in large areas. Lack of cooperation between neighbors is also a problem, snails are easily transported, and treated pastures become re-infested by neighboring fields and streams.
- Drenching the sheep with carbon tetra-chloride in paraffin oil has proven to be an alternative. However, drenching in more than recommended doses can be fatal, by causing liver damage, which could initiate the disease in sheep carrying "B. oedematiens" spores.
- Drainage is an effective option to eliminate the snails. However, draining the places where the grass grows eliminates a source of food for the sheep and creates other unwanted problems.
Horses may develop pharyngitis, laryngitis, or esophagitis secondary to indwelling nasogastric tube. Other complications include thrombophlebitis, laminitis (which subsequently reduces survival rate), and weight loss. Horses are also at increased risk of hepatic injury.
Survival rates for DPJ are 25–94%. Horses that survive the incident rarely have reoccurrence.
In laboratory animals, prevention includes a low-stress environment, an adequate amount of nutritional feed, and appropriate sanitation measurements. Because animals likely ingest bacterial spores from contaminated bedding and feed, regular cleaning is a helpful method of prevention. No prevention methods are currently available for wild animal populations.
In sheep, the disease is also called the "circling disease". The most obvious signs for the veterinarians are neurological, especially lateral deviation of the neck and head.
All the factors collectively causing CNE are generally only present in the hinterlands of New Guinea and parts of Africa, Latin America, and Asia. These factors include protein deprivation (causing inadequate synthesis of trypsin protease (an enzyme), to which the toxin is very sensitive), poor food hygiene, episodic meat feasting, staple diets containing trypsin inhibitors (sweet potatoes), and infection by "Ascaris" parasites which secrete a trypsin inhibitor. In New Guinea (origin of the term "pigbel"), the disease is usually spread through contaminated meat (especially pork) and perhaps by peanuts. (CNE was also diagnosed in post World War II Germany, where it was known as "Darmbrand" or "fire bowels").
Bacteria are a common cause of foodborne illness. In the United Kingdom during 2000, the individual bacteria involved were the following: "Campylobacter jejuni" 77.3%, "Salmonella" 20.9%, 1.4%, and all others less than 0.56%. In the past, bacterial infections were thought to be more prevalent because few places had the capability to test for norovirus and no active surveillance was being done for this particular agent. Toxins from bacterial infections are delayed because the bacteria need time to multiply. As a result, symptoms associated with intoxication are usually not seen until 12–72 hours or more after eating contaminated food. However, in some cases, such as Staphylococcal food poisoning, the onset of illness can be as soon as 30 minutes after ingesting contaminated food.
Most common bacterial foodborne pathogens are:
- "Campylobacter jejuni" which can lead to secondary Guillain–Barré syndrome and periodontitis
- "Clostridium perfringens", the "cafeteria germ"
- "Salmonella" spp. – its "S. typhimurium" infection is caused by consumption of eggs or poultry that are not adequately cooked or by other interactive human-animal pathogens
- "" enterohemorrhagic (EHEC) which can cause hemolytic-uremic syndrome
Other common bacterial foodborne pathogens are:
- "Bacillus cereus"
- "Escherichia coli", other virulence properties, such as enteroinvasive (EIEC), enteropathogenic (EPEC), enterotoxigenic (ETEC), enteroaggregative (EAEC or EAgEC)
- "Listeria monocytogenes"
- "Shigella" spp.
- "Staphylococcus aureus"
- "Staphylococcal enteritis"
- "Streptococcus"
- "Vibrio cholerae", including O1 and non-O1
- "Vibrio parahaemolyticus"
- "Vibrio vulnificus"
- "Yersinia enterocolitica" and "Yersinia pseudotuberculosis"
Less common bacterial agents:
- "Brucella" spp.
- "Corynebacterium ulcerans"
- "Coxiella burnetii" or Q fever
- "Plesiomonas shigelloides"
Endemic areas include Asia, Mexico, India and parts of South Africa. Originally believed to be confined to Asia, in the 1970s gnathostomiasis was discovered in Mexico, and found in Australia in 2011. Even though it is endemic in areas of Southeast Asia and Latin America, it is an uncommon disease. However, researchers have noticed recently an increase in incidence. This disease is most common in both Thailand and Japan, but in Thailand it is responsible for most of the observed parasitic CNS infection. It has long been recognised in China, but reports have only recently appeared in the English literature.
As the infection is usually transmitted into humans through animal bites, antibiotics usually treat the infection, but medical attention should be sought if the wound is severely swelling. Pasteurellosis is usually treated with high-dose penicillin if severe. Either tetracycline or chloramphenicol provides an alternative in beta-lactam-intolerant patients. However, it is most important to treat the wound.
DPJ is most commonly seen in the Southeastern US, although cases have been reported throughout the United States and Canada, as well as sporadically in the United Kingdom and Europe. Horses in the Southeastern US tend to have a more severe form of the disease relative to other locations. Age, breed, and gender appear to have no effect on disease prevalence.
Yersiniosis is usually self-limiting and does not require treatment. For severe infections (sepsis, focal infection) especially if associated with immunosuppression, the recommended regimen includes doxycycline in combination with an aminoglycoside. Other antibiotics active against "Y. enterocolitica" include trimethoprim-sulfamethoxasole, fluoroquinolones, ceftriaxone, and chloramphenicol. "Y. enterocolitica" is usually resistant to penicillin G, ampicillin, and cephalotin due to beta-lactamase production.