Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The effects of myoclonus in an individual can vary depending on the form and the overall health of the individual. In severe cases, particularly those indicating an underlying disorder in the brain or nerves, movement can be extremely distorted and limit ability to normally function, such as in eating, talking, and walking. In these cases, treatment that is usually effective, such as clonazepam and sodium valproate, may instead cause adverse reaction to the drug, including increased tolerance and a greater need for increase in dosage. However, the prognosis for more simple forms of myoclonus in otherwise healthy individuals may be neutral, as the disease may cause few to no difficulties. Other times the disease starts simply, in one region of the body, and then spreads.
Research on myoclonus is supported through the National Institute of Neurological Disorders and Stroke (NINDS). The primary focus of research is on the role of neurotransmitters and receptors involved in the disease. Identifying whether or not abnormalities in these pathways cause myoclonus may help in efforts to develop drug treatments and diagnostic tests. Determining the extent that genetics play in these abnormalities may lead to potential treatments for their reversal, potentially correcting the loss of inhibition while enhancing mechanisms in the body that would compensate for their effects.
Myoclonic dystonia or Myoclonus dystonia syndrome is a rare movement disorder that induces spontaneous muscle contraction causing abnormal posture. The prevalence of myoclonus dystonia has not been reported, however, this disorder falls under the umbrella of movement disorders which affect thousands worldwide. Myoclonus dystonia results from mutations in the SGCE gene coding for an integral membrane protein found in both neurons and muscle fibers. Those suffering from this disease exhibit symptoms of rapid, jerky movements of the upper limbs (myoclonus), as well as distortion of the body's orientation due to simultaneous activation of agonist and antagonist muscles (dystonia).
Myoclonus dystonia is caused by loss-of-function-mutations in the epsilon sarcoglycan gene (SGCE). The disease is dominantly inherited, however SGCE is an imprinted gene, so only the paternal allele is expressed. Therefore, children suffering from this disease inherit the mutation from the father. If the mutated allele is inherited from the mother, the child is not likely to exhibit symptoms.
While no cure has been found for myoclonus dystonia, treatment options are available to those suffering from the disease. Ethanol often ameliorates the symptoms well, and so the syndrome is also called "Alcohol-responsive dystonia". Alcohol may be substituted by benzodiazepines, such as clonazepam, which work through the same mechanism. Deep brain stimulation (DBS) is another viable option that can alleviate symptoms without the unwanted side effects of medications, and has been successful in treating other movement disorders.
To date, there is no single, universal treatment that has been found to cure myoclonus dystonia. However, there are several treatment methods that have been found to be effective for helping to reduce the symptoms associated with the syndrome.
Myoclonic epilepsy refers to a family of epilepsies that present with myoclonus. When myoclonic jerks are occasionally associated with abnormal brain wave activity, it can be categorized as myoclonic seizure. If the abnormal brain wave activity is persistent and results from ongoing seizures, then a diagnosis of myoclonic epilepsy may be considered.
PME accounts for less than 1% of epilepsy cases at specialist centres. The incidence and prevalence of PME is unknown, but there are considerable geography and ethnic variations amongst the specific genetic disorders. One cause, Unverricht Lundborg Disease, has an incidence of at least 1:20,000 in Finland.
Benign neonatal sleep myoclonus (BNSM) is the occurrence of myoclonus (jerky movements) during sleep. It is not associated with seizures.
Occurs in the first few weeks of life, usually resolves in first 2–3 months of life. Often worries parents because they appear like seizures, but they are not. Features that can help distinguish this condition from seizures include: The myoclonic movements only occur during sleep, when baby is woken up the myoclonic movements stop, normal EEG, normal neurological examination, normal developmental examination. The myoclonic jerks occur during non-REM sleep
An increased risk of tardive dyskinesia has been associated with smoking in some studies, although a negative study does exist. There seems to be a cigarette smoke-exposure-dependent risk for TD in antipsychotic-treated patients. Elderly patients are also at a heightened risk for developing TD, as are females and those with organic brain injuries or diabetes mellitus and those with the negative symptoms of schizophrenia. TD is also more common in those that experience acute neurological side effects from antipsychotic drug treatment. Racial discrepancies in TD rate also exist, with Africans and African Americans having higher rates of TD after exposure to antipsychotics. Certain genetic risk factors for TD have been identified including polymorphisms in the genes encoding the D, 5-HT and 5-HT receptors.
The prognosis for Rolandic seizures is invariably excellent, with probably less than 2% risk of developing absence seizures and less often GTCS in adult life.
Remission usually occurs within 2–4 years from onset and before the age of 16 years. The total number of seizures is low, the majority of patients having fewer than 10 seizures; 10–20% have just a single seizure. About 10–20% may have frequent seizures, but these also remit with age.
Children with Rolandic seizures may develop usually mild and reversible linguistic, cognitive and behavioural abnormalities during the active phase of the disease. These may be worse in children with onset of seizures before 8 years of age, high rate of occurrence and multifocal EEG spikes.
The development, social adaptation and occupations of adults with a previous history of Rolandic seizures were found normal.
PLMD is estimated to occur in approximately 4% of adults (aged 15–100), but is more common in the elderly, especially females, with up to 11% experiencing symptoms. PLMD appears to be related to restless legs syndrome (RLS) - a study of 133 people found that 80% of those with RLS also had PLMD. However the opposite is not true: many people who have PLMD do "not" also have restless legs syndrome.
Possible causes include:
- Syncope (fainting)
- Reflex anoxic seizures
- Breath-holding spells of childhood
- Hypoglycaemia
- Cataplexy
- Hyperekplexia, also called startle syndrome
- Migraine
- Narcolepsy
- Non-epileptic myoclonus
- Opsoclonus
- Parasomnias, including night terrors
- Paroxysmal kinesigenic dyskinesia
- Repetitive or ritualistic behaviours
- Tics
- AADC Deficiency
It is mostly unknown what causes PLMD, but in many cases the patient also suffers from other medical problems such as Parkinson's disease or narcolepsy. Factors that increase the likelihood of PLMD in the absence of restless leg syndrome include being a shift worker, snoring, coffee drinking, stress, and use of hypnotics, particularly in the case of benzodiazepine withdrawal. For women, the presence of musculoskeletal disease, heart disease, obstructive sleep apnea, cataplexy, doing physical activities close to bedtime and the presence of a mental disorder were significantly associated with having a higher risk of both PLMD and restless legs syndrome.
Non-epileptic seizures are paroxysmal events that mimic an epileptic seizure but do not involve abnormal, rhythmic discharges of cortical neurons. They are caused by either physiological or psychological conditions. The latter is discussed more fully in psychogenic non-epileptic seizures.
[Please could somebody add an actual description of what happens when somebody has a seizure or 'paroxysmal event'?!]
The age of onset ranges from 1 to 14 years with 75% starting between 7–10 years. There is a 1.5 male predominance, prevalence is around 15% in children aged 1–15 years with non-febrile seizures and incidence is 10–20/100,000 of children aged 0–15 years
Juvenile myoclonic epilepsy is responsible for 7% of cases of epilepsy. Seizures usually begin around puberty and usually have a genetic basis. Seizures can be stimulus-selective, with flashing lights being one of the most common triggers.
The medical treatment of essential tremor at the Movement Disorders Clinic at Baylor College of Medicine begins with minimizing stress and tremorgenic drugs along with recommending a restricted intake of beverages containing caffeine as a precaution, although caffeine has not been shown to significantly intensify the presentation of essential tremor. Alcohol amounting to a blood concentration of only 0.3% has been shown to reduce the amplitude of essential tremor in two-thirds of patients; for this reason it may be used as a prophylactic treatment before events during which one would be embarrassed by the tremor presenting itself. Using alcohol regularly and/or in excess to treat tremors is highly unadvisable, as there is a purported correlation between tremor and alcoholism. Alcohol is thought to stabilize neuronal membranes via potentiation of GABA receptor-mediated chloride influx. It has been demonstrated in essential tremor animal models that the food additive 1-octanol suppresses tremors induced by harmaline, and decreases the amplitude of essential tremor for about 90 minutes.
Two of the most valuable drug treatments for essential tremor are propranolol, a beta blocker, and primidone, an anticonvulsant. Propranolol is much more effective for hand tremor than head and voice tremor. Some beta-adrenergic blockers (beta blockers) are not lipid-soluble and therefore cannot cross the blood–brain barrier (propranolol being an exception), but can still act against tremors; this indicates that this drug’s mechanism of therapy may be influenced by peripheral beta-adrenergic receptors. Primidone’s mechanism of tremor prevention has been shown significantly in controlled clinical studies. The benzodiazepine drugs such as diazepam and barbiturates have been shown to reduce presentation of several types of tremor, including the essential variety. Controlled clinical trials of gabapentin yielded mixed results in efficacy against essential tremor while topiramate was shown to be effective in a larger double-blind controlled study, resulting in both lower Fahn-Tolosa-Marin tremor scale ratings and better function and disability as compared to placebo.
It has been shown in two double-blind controlled studies that injection of botulinum toxin into muscles used to produce oscillatory movements of essential tremors, such as forearm, wrist and finger flexors, may decrease the amplitude of hand tremor for approximately three months and that injections of the toxin may reduce essential tremor presenting in the head and voice. The toxin also may help tremor causing difficulty in writing, although properly adapted writing devices may be more efficient. Due to high incidence of side effects, use of botulinum toxin has only received a C level of support from the scientific community.
Deep brain stimulation toward the ventral intermediate nucleus of the thalamus and potentially the subthalamic nucleus and caudal zona incerta nucleus have been shown to reduce tremor in numerous studies. That toward the ventral intermediate nucleus of the thalamus has been shown to reduce contralateral and some ipsilateral tremor along with tremors of the cerebellar outflow, head, resting state and those related to hand tasks; however, the treatment has been shown to induce difficulty articulating thoughts (dysarthria), and loss of coordination and balance in long-term studies. Motor cortex stimulation is another option shown to be viable in numerous clinical trials.
Tardive dyskinesia most commonly occurs in patients with psychiatric conditions who are treated with antipsychotic medications for many years. The average prevalence rate has been estimated to be around 30% for individuals taking antipsychotic medication, such as that used to treat schizophrenia. A study being conducted at the Yale University School of Medicine has estimated that "32% of patients develop persistent tics after 5 years on major tranquilizers, 57% by 15 years, and 68% by 25 years." More drastic data was found during a longitudinal study conducted on individuals 45 years of age and older who were taking antipsychotic drugs. According to this research study, 26% of patients developed tardive dyskinesia after just one year on the medication. Another 60% of this at-risk group developed the disorder after 3 years, and 23% developed "severe" cases of tardive dyskinesia within 3 years. According to these estimates, the majority of patients will eventually develop the disorder if they remain on the drugs long enough.
Elderly patients are more prone to develop tardive dyskinesia, and elderly women are more at-risk than elderly men. The risk is much lower for younger men and women, and also more equal across the sexes. Patients who have undergone electro-convulsive therapy or have a history of diabetes or alcohol abuse also have a higher risk of developing tardive dyskinesia.
Several studies have recently been conducted comparing the prevalence rate of tardive dyskinesia with second generation, or more modern, antipsychotic drugs to that of first generation drugs. The newer antipsychotics appear to have a substantially reduced potential for causing tardive dyskinesia. However, some studies express concern that the prevalence rate has decreased far less than expected, cautioning against the overestimation of the safety of modern antipsychotics.
A physician can evaluate and diagnose a patient with tardive dyskinesia by conducting a systematic examination. The physician should ask the patient to relax, and look for symptoms like facial grimacing, eye or lip movements, tics, respiratory irregularities, and tongue movements. In some cases, patients experience nutritional problems, so a physician can also look for a gain or loss in weight.
Apart from the underlying psychiatric disorder, tardive dyskinesia may cause afflicted people to become socially isolated. It also increases the risk of dysmorphophobia and can even lead to suicide. Emotional or physical stress can increase the severity of dyskinetic movements, whereas relaxation and sedation have the opposite effect.
Treatment of Ramsay Hunt Syndrome Type 1 is specific to individual symptoms. Myoclonus and seizures may be treated with drugs like valproate.
Some have described this condition as difficult to characterize.
Before prescribing medication for these conditions which often resolve spontaneously, recommendations have pointed to improved skin hygiene, good hydration via fluids, good nutrition, and installation of padded bed rails with use of proper mattresses. Pharmacological treatments include the typical neuroleptic agents such as fluphenazine, pimozide, haloperidol and perphenazine which block dopamine receptors; these are the first line of treatment for hemiballismus. Quetiapine, sulpiride and olanzapine, the atypical neuroleptic agents, are less likely to yield drug-induced parkinsonism and tardive dyskinesia. Tetrabenazine works by depleting presynaptic dopamine and blocking postsynaptic dopamine receptors, while reserpine depletes the presynaptic catecholamine and serotonin stores; both of these drugs treat hemiballismus successfully but may cause depression, hypotension and parkinsonism. Sodium valproate and clonazepam have been successful in a limited number of cases. Stereotactic ventral intermediate thalamotomy and use of a thalamic stimulator have been shown to be effective in treating these conditions.
This is an autosomal recessive disorder in which the body is deficient in α-neuraminidase.
This condition is very rare, only affecting one in two million people. It is more common in females than in males. There are several hundred cases in the United States, 25 known cases in the United Kingdom, and less than that in Australia and New Zealand.
The three main signs of hyperekplexia are generalized stiffness, excessive startle beginning at birth and nocturnal myoclonus. Affected individuals are fully conscious during episodes of stiffness, which consist of forced closure of the eyes and an extension of the extremities followed by a period of generalised stiffness and uncontrolled falling at times. Initially, the disease was classified into a "major" and a "minor" form, with the minor form being characterized by an excessive startle reflex, but lacking stiffness. There is only genetic evidence for the existence of the major form.
Other signs and symptoms of hyperekplexia may include episodic neonatal apnea, excessive movement during sleep and the head-retraction reflex. The link to some cases of Sudden Infant Death remains controversial.
Currently there are no clinically established laboratory investigations available to predict prognosis or therapeutic response.
Tumors in children who develop OMS tend to be more mature, showing favorable histology and absence of n-myc oncogene amplification than similar tumors in children without symptoms of OMS. Involvement of local lymph nodes is common, but these children rarely have distant metastases and their prognosis, in terms of direct morbidity and mortality effects from the tumor, is excellent. The three-year survival rate for children with non-metastatic neuroblastoma and OMS was 100% according to Children’s Cancer Group data (gathered from 675 patients diagnosed between 1980 and 1994); three-year survival in comparable patients with OMS was 77%. Although the symptoms of OMS are typically steroid-responsive and recovery from acute symptoms of OMS can be quite good, children often suffer lifelong neurologic sequelae that impair motor, cognitive, language, and behavioral development.
Most children will experience a relapsing form of OMS, though a minority will have a monophasic course and may be more likely to recover without residual deficits. Viral infection may play a role in the reactivation of disease in some patients who had previously experienced remission, possibly by expanding the memory B cell population. Studies have generally asserted that 70-80% of children with OMS will have long-term neurologic, cognitive, behavioral, developmental, and academic impairment. Since neurologic and developmental difficulties have not been reported as a consequence of neuroblastoma or its treatment, it is thought that these are exclusively due to the immune mechanism underlying OMS.
One study concludes that: ""Patients with OMA and neuroblastoma have excellent survival but a high risk of neurologic sequelae. Favourable disease stage correlates with a higher risk for development of neurologic sequelae. The role of anti-neuronal antibodies in late sequelae of OMA needs further clarification"."
Another study states that: ""Residual behavioral, language, and cognitive problems occurred in the majority"."
RHS type 1 is caused by the impairment of a regulatory mechanism between cerebellar and brainstem nuclei and has been associated with a wide range of diseases, including Lafora disease, dentatorubropallidoluysian atrophy, and celiac disease.
The cause of ULD is known to be a mutation of the gene that produces cystatin B. The disease is autosomal recessive, so both parents of an individual must be carriers of the recessive CSTB gene for the individual to inherit it, and for an individual to show symptoms of ULD, they must have both recessive CSTB genes. Siblings of affected individuals who only have one recessive gene have been monitored and generally do not show the signs of ULD, though in some cases mild symptoms may be present.