Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
High amounts of ionizing radiation exposure can increase the risk of AML. Survivors of the atomic bombings of Hiroshima and Nagasaki had an increased rate of AML, as did radiologists exposed to high levels of X-rays prior to the adoption of modern radiation safety practices. People treated with ionizing radiation after treatment for prostate cancer, non-Hodgkin lymphoma, lung cancer, and breast cancer have the highest chance of acquiring AML, but this increased risk returns to the background risk observed in the general population after 12 years.
Leukemia is rarely associated with pregnancy, affecting only about 1 in 10,000 pregnant women. How it is handled depends primarily on the type of leukemia. Nearly all leukemias appearing in pregnant women are acute leukemias. Acute leukemias normally require prompt, aggressive treatment, despite significant risks of pregnancy loss and birth defects, especially if chemotherapy is given during the developmentally sensitive first trimester. Chronic myelogenous leukemia can be treated with relative safety at any time during pregnancy with Interferon-alpha hormones. Treatment for chronic lymphocytic leukemias, which are rare in pregnant women, can often be postponed until after the end of the pregnancy.
Exposure to anticancer chemotherapy, in particular alkylating agents, can increase the risk of subsequently developing AML. The risk is highest about three to five years after chemotherapy. Other chemotherapy agents, specifically epipodophyllotoxins and anthracyclines, have also been associated with treatment-related leukemias, which are often associated with specific chromosomal abnormalities in the leukemic cells.
Occupational chemical exposure to benzene and other aromatic organic solvents is controversial as a cause of AML. Benzene and many of its derivatives are known to be carcinogenic "in vitro". While some studies have suggested a link between occupational exposure to benzene and increased risk of AML, others have suggested the attributable risk, if any, is slight.
There have been few individual epidemiological studies of CMML, due to the difficulty in the disease classification. CMML has an estimated incidence of less than 1 per 100,000 persons per year.
The median age of diagnosis is 65–75. CMML has a propensity for males rather than females, at a ratio of 1.5–3:1.
Acute erythroid leukemia is rare, accounting for only 3–5% of all acute myeloid leukemia cases. One study estimated an occurrence rate of 0.077 cases per 100,000 people each year. 64–70% of people with this condition are male, and most are elderly, with a median age of 65.
Acute promyelocytic leukemia represents 10-12% of AML cases. The median age is approximately 30–40 years, which is considerably younger than the other subtypes of AML (70 years). Incidence is higher among individuals of Latin American or South European origin. It can also occur as a secondary malignancy in those that receive treatment with topoisomerase II inhibitors (such as the anthracyclines and etoposide) due to the carcinogenic effects of these agents, with patients with breast cancer representing the majority of such patients. Around 40% of patients with APL also have a chromosomal abnormality such as trisomy 8 or isochromosome 17 which do not appear to impact on long-term outcomes.
Some people have a genetic predisposition towards developing leukemia. This predisposition is demonstrated by family histories and twin studies. The affected people may have a single gene or multiple genes in common. In some cases, families tend to develop the same kinds of leukemia as other members; in other families, affected people may develop different forms of leukemia or related blood cancers.
In addition to these genetic issues, people with chromosomal abnormalities or certain other genetic conditions have a greater risk of leukemia. For example, people with Down syndrome have a significantly increased risk of developing forms of acute leukemia (especially acute myeloid leukemia), and Fanconi anemia is a risk factor for developing acute myeloid leukemia. Mutation in SPRED1 gene has been associated with a predisposition to childhood leukemia.
Chronic myelogenous leukemia is associated with a genetic abnormality called the Philadelphia translocation; 95% of people with CML carry the Philadelphia mutation, although this is not exclusive to CML and can be observed in people with other types of leukemia.
The exact cause of most cases of childhood leukemia is not known. Most children with leukemia do not have any known risk factors. The immune system plays an important role in protecting the body's immune system. An alteration or defect in the immune system may increase the risk for developing cancer. The immune system can be damaged by different factors, such as exposure to different viruses, environmental factors, chemical factors and other various infections.
There also appears to be some evidence linking childhood leukemia to x-ray exposure. In a 2010 study by the University of California, Berkeley’s School of Public Health, researchers found that children with acute lymphoid leukemia (ALL) had almost twice the chance of having been exposed to three or more X-rays compared with children who did not have leukemia.
Prognosis is generally good relative to other leukemias. Because of the acuteness of onset compared to other leukemias, early death is comparatively more common. The cause of early death is most commonly severe bleeding, often intracranial hemorrhage. Early death from hemorrhage occurs in 5-10% of patients in countries with adequate access to healthcare and 20-30% of patients in less developed countries. Risk factors for early death due to hemorrhage include delayed diagnosis, late treatment initiation, and high white blood cell count on admission. Despite advances in treatment, early death rates have remained relatively constant.
Relapse rates are extremely low. Most deaths following remission are from other causes, such as second malignancies, which in one study occurred in 8% of patients. In this study, second malignancies accounted for 41% of deaths, and heart disease, 29%. Survival rates were 88% at 6.3 years and 82% at 7.9 years.
In another study, 10-year survival rate was estimated to be approximately 77%.
Taken together, haematological malignancies account for 9.5% of new cancer diagnoses in the United States and 30,000 patients in the UK are diagnosed each year. Within this category, lymphomas are more common than leukemias.
Chloromas may occur in patients with a diagnosis of myelodysplastic syndrome (MDS) or myeloproliferative syndromes (MPS) (e.g. chronic myelogenous leukemia (CML), polycythemia vera, essential thrombocytosis, or myelofibrosis). The detection of a chloroma is considered "de facto" evidence these premalignant conditions have transformed into an acute leukemia requiring appropriate treatment. For example, presence of a chloroma is sufficient to indicate chronic myelogenous leukemia has entered its 'blast crisis' phase.
The Düsseldorf score stratifies cases using four categories, giving one point for each; bone marrow blasts ≥5%, LDH >200U/L, haemoglobin ≤9g/dL and a platelet count ≤100,000/uL. A score of 0 indicates a low risk group' 1-2 indicates an intermediate risk group and 3-4 indicates a high risk group. The cumulative 2 year survival of scores 0, 1-2 and 3-4 is 91%, 52% and 9%; and risk of AML transformation is 0%, 19% and 54% respectively.
Complete remission and long-term survival are more common in children than adults.
Prognosis depends upon the cause. One third of cases is associated with a t(1;22)(p13;q13) mutation in children. These cases carry a poor prognosis.
Another third of cases is found in Down syndrome. These cases have a reasonably fair prognosis.
The last third of cases may be heterogeneous, and carry a poor prognosis.
Information on prognosis is limited by the rarity of the condition. Prognosis appears to be no different to AML in general, taking into account other risk factors. Acute erythroid leukemia (M6) has a relatively poor prognosis. A 2010 study of 124 patients found a median overall survival of 8 months. A 2009 study on 91 patients found a median overall survival for erythroleukemia patients of 36 weeks, with no statistically significant difference to other AML patients. AEL patients did have a significantly shorter disease free survival period, a median of 32 weeks, but this effect was explained by other prognostic factors. That is, AEL is often associated with other risk factors, like monosomal karyotypes and a history of myelodysplastic syndrome. Prognosis is worse in elderly patients, those with a history of myelodysplastic syndrome, and in patients who had previously received chemotherapy for the treatment of a different neoplasm.
Acute myelomonocytic leukemia (AMMoL) is a form of acute myeloid leukemia that involves a proliferation of CFU-GM myeloblasts and monoblasts.
It is classified under "M4" in the French-American-British classification (FAB).
It is classified under "AML, not otherwise classified" in the WHO classification.
Translocations have been observed.
Progression from myelodysplastic syndrome has been reported.
Acute myeloblastic leukemia (AML) is a group of malignant bone marrow neoplasms of myeloid
precursors of white blood cells. Acute myelomonocytic leukemia (AML-M4) is a common type of pediatric AML. However, the condition is rare and represents approximately 3% of all leukemias during childhood and has an incidence of 1.1 – 1.7 per million per year. The symptoms may be aspecific: asthenia, pallor, fever, dizziness and respiratory symptoms. More specific symptoms are bruises and/or (excessive) bleeding, coagulation disorders (DIC), neurological disorders and gingival hyperplasia. Diagnostic methods include blood analysis, bone marrow aspirate for cytochemical, immunological and cytogeneticalanalysis, and cerebrospinal fluid (CSF) investigations. A characteristic chromosomal abnormalityobserved in AML-M4 is inv(16). Treatment includes intensive multidrug chemotherapy and in selected cases allogeneic bone marrow transplantation. Nevertheless, outcome of AML remains poor with an
overall survival of 35-60%. Children with AML-M4 carrying the inv(16) abnormality have a better prognosis (61% 5-year overall survival). New therapeutics are required to increase the probability of cure in this serious disorder.
At least one case of "FIP1L1-PDGFRA" fusion gene-induced eosinophilic leukemia presenting with myeloid sarcoma and eosinophilia has been reported. This form of myeloid sarcoma is distinguished by its highly successful treatment with imatinib (the recommended treatment for "FIP1L1-PDGRGA" fusion gene-induced eosinophilic leukemia) rather than more aggressive and toxic therapy.
Controversy remains today whether this disorder is a subtype of acute myeloid leukemia or myelodysplastic syndromes; however, it is currently classified as a form of AML.
The prognosis for BAL patients is not good which is worse than ALL and AML. Medical Blood Institute reported cases of CR rate was 31.6%, with a median remission are less than 6 months
The median survival time is only 7.5 months. The life quality is also low because the immune function of patient is damaged seriously. They have to stay in hospital and need 24h care.
In another study, the results showed that young age, normal karyotype and ALL induction therapy will have a better prognosis than Ph+, adult patients. The study shows median survival of children is 139 months versus 11 months of adults, 139 months for normal karyotype patients versus 8 months for ph+ patients.
Acute mast cell leukemia is extremely aggressive and has a grave prognosis. In most cases, multi-organ failure including bone marrow failure develops over weeks to months. Median survival after diagnosis is only about 6 months.
Historically, hematological malignancies have been most commonly divided by whether the malignancy is mainly located in the blood (leukemia) or in lymph nodes (lymphomas).
However, the influential WHO Classification (published in 2001) placed a greater emphasis on cell lineage.
Relative proportions of hematological malignancies in the United States
This is a rare disease, with less than 100 cases reported. Of these cases, an equal male:female ratio was observed,
with cases typically seen in older adults.
It is associated with GATA1, and risks are increased in individuals with Down syndrome.
However, not all cases are associated with Down syndrome, and other genes can also be associated with AMKL.
Another related gene is MKL1, which is also known as "MAL". This gene is a cofactor of serum response factor.
The cause directly lead BAL is not clear. But exposure to radiation, chemical exposure, virus and genetics are the mainly reasons researchers supposed.
Leukemia is usually described either as "acute", which grows quickly, or "chronic", which grows slowly. One main type of acute leukemia is acute lymphocytic leukemia (ALL), which accounts for about 3 out of 4 cases of leukemia in children. ALL is a form of leukemia that affects the lymphocytes, a type of white blood cells which fights infection. When a patient has ALL, the bone marrow makes too many immature white blood cells and they do not mature correctly. Therefore, the white blood cells over-produce, crowding the other blood cells. The white blood cells also do not work correctly to fight infection.
Another type of acute leukemia is acute myelogenous leukemia (AML). AML is cancer of the blood in which too many myeloblasts, immature white blood cells, are produced in the bone marrow. The marrow continues to produce abnormal cells that crowd the other blood cells and do not work properly to fight infection. Almost all childhood leukemia is acute.
Chronic leukemias are more common in adults than in children, and although they tend to grow more slowly than acute leukemias, they are harder to treat. These chronic leukemias are divided into two types: chronic myelogenous leukemia (CML) and chronic lymphocytic leukemia (CLL). CML is rare in children, but does occur and is treatable in children the same as in adults. CML patients have too many immature white blood cells being produced, and the cells crowd the other healthy blood cells.
A specific chromosome rearrangement is also found in patients with CML, among the 46 chromosomes in human cells. Part of chromosome nine breaks off and attaches itself to chromosome 22, meaning there is an exchange of genetic material between chromosomes 9 and 22. The rearrangement of the chromosomes changes the positions and functions of certain genes, which causes uncontrolled cell growth.
CLL is another form of chronic leukemia, but is extremely rare in children. Juvenile myelomonocytic leukemia (JMML) is a form of leukemia that is neither chronic nor acute and occurs most often in children under the age of four. JMML begins from myeloid cells, but is not as fast-growing as AML or as slow as CML.
Acute panmyelosis with myelofibrosis (APMF) it is a poorly defined disorder that arises as either a clonal disorder, or following toxic exposure to the bone marrow.