Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The Food and Drug Administration is recommending that physicians restrict prescribing high-dose Simvastatin (Zocor, Merck) to patients, given an increased risk of muscle damage. The FDA drug safety communication stated that physicians should limit using the 80-mg dose unless the patient has already been taking the drug for 12 months and there is no evidence of myopathy.
"Simvastatin 80 mg should not be started in new patients, including patients already taking lower doses of the drug," the agency states.
It is not uncommon for drugs to damage muscle fibers. Particular families of drugs are known to induce myopathies on the molecular level, thus altering organelle function such as the mitochondria. Use of multiple drugs from these families in conjunction with one another can increase the risk of developing a myopathy. Many of the drugs associated with inducing myopathies in patients are found in rheumatology practice.
Myopathies in systemic disease results from several different disease processes including endocrine, inflammatory, paraneoplastic, infectious, drug- and toxin-induced, critical illness myopathy, metabolic, collagen related, and myopathies with other systemic disorders. Patients with systemic myopathies often present acutely or sub acutely. On the other hand, familial myopathies or dystrophies generally present in a chronic fashion with exceptions of metabolic myopathies where symptoms on occasion can be precipitated acutely. Most of the inflammatory myopathies can have a chance association with malignant lesions; the incidence appears to be specifically increased only in patients with dermatomyositis.
There are many types of myopathy. ICD-10 codes are provided here where available.
In lack of pharmacological treatment, people with SMA tend to deteriorate over time. Recently, survival has increased in severe SMA patients with aggressive and proactive supportive respiratory and nutritional support.
The majority of children diagnosed with SMA type 0 and I do not reach the age of IV, recurrent respiratory problems being the primary cause of death. With proper care, milder SMA type I cases (which account for approx. 10% of all SMA1 cases) live into adulthood. Long-term survival in SMA type I is not sufficiently evidenced; however, recent advances in respiratory support seem to have brought down mortality.
In SMA type II, the course of the disease is slower to progress and life expectancy is less than the healthy population. Death before the age of 20 is frequent, although many people with SMA live to become parents and grandparents. SMA type III has normal or near-normal life expectancy if standards of care are followed. Type IV, adult-onset SMA usually means only mobility impairment and does not affect life expectancy.
In all SMA types, physiotherapy has been shown to delay the progress of disease.
Acquired noninflammatory myopathy can be caused by a variety of factors including metabolic abnormalities, drugs, nutritional deficiency, trauma, and upstream abnormalities resulting in decreased function. Two of the most common causes of ANIM are hyperthyroidism and excessive steroid use, while many drugs used to treat rheumatism are known to be inducing agents. Most cases of ANIM can be linked to drugs or dietary abnormalities.
The more severe the type of SMA, the more likely to have nutrition related health issues. Health issues can be; difficulty in feeding, jaw opening, chewing and swallowing. Individuals with such difficulties can be at increase risk of over or undernutrition, failure to thrive and aspiration. Other nutritional issues, espicially in individuals that are non-ambulatory (more severe types of SMA) include; food not passing through the stomach quickly enough, gastric reflux, constipation, vomiting and bloating. Therein, it could be necessary in SMA type I and people with more severe type II to have a feeding tube or gastrostomy. Additionally, metabolic abnormalities resulting from SMA impair β-oxidation of fatty acids in muscles and can lead to organic acidemia and consequent muscle damage, especially when fasting. It is suggested that people with SMA, especially those with more severe forms of the disease, reduce intake of fat and avoid prolonged fasting (i.e., eat more frequently than healthy people) as well as choosing softer foods to avoid aspiration. During an acute illness, especially in children, nutritional problems may first present or can exacerbate an existing problem (example: aspiration) as well as cause other health issues such as electrolyte and blood sugar disturbances.
Neuromuscular disease is a very broad term that encompasses many diseases and ailments that impair the functioning of the muscles, either directly, being pathologies of the voluntary muscle, or indirectly, being pathologies of nerves or neuromuscular junctions.
Neuromuscular diseases are those that affect the muscles and/or their direct nervous system control, problems with central nervous control can cause either spasticity or some degree of paralysis (from both lower and upper motor neuron disorders), depending on the location and the nature of the problem. Some examples of central disorders include cerebrovascular accident, Parkinson's disease, multiple sclerosis, Huntington's disease and Creutzfeldt–Jakob disease. Spinal muscular atrophies are disorders of lower motor neuron while amyotrophic lateral sclerosis is a mixed upper and lower motor neuron condition.
A 2006 study followed 223 patients for a number of years. Of these, 15 died, with a median age of 65 years. The authors tentatively concluded that this is in line with a previously reported estimate of a shortened life expectancy of 10-15 years (12 in their data).
Neuromuscular disease can be caused by autoimmune disorders, genetic/hereditary disorders and some forms of the collagen disorder Ehlers–Danlos Syndrome, exposure to environmental chemicals and poisoning which includes heavy metal poisoning. The failure of the electrical insulation surrounding nerves, the myelin, is seen in certain deficiency diseases, such as the failure of the body's system for absorbing vitamin B-12
Diseases of the motor end plate include myasthenia gravis, a form of muscle weakness due to antibodies against acetylcholine receptor, and its related condition Lambert-Eaton myasthenic syndrome (LEMS). Tetanus and botulism are bacterial infections in which bacterial toxins cause increased or decreased muscle tone, respectively.Muscular dystrophies, including Duchenne's and Becker's, are a large group of diseases, many of them hereditary or resulting from genetic mutations, where the muscle integrity is disrupted, they lead to progressive loss of strength and decreased life span.
Further causes of neuromuscular diseases are :
Inflammatory muscle disorders
- Polymyalgia rheumatica (or "muscle rheumatism") is an inflammatory condition that mainly occurs in the elderly; it is associated with giant-cell arteritis(It often responds to prednisolone).
- Polymyositis is an autoimmune condition in which the muscle is affected.
- Rhabdomyolysis is the breakdown of muscular tissue due to any cause.
Tumors
- Smooth muscle: leiomyoma (benign)
- Striated muscle: rhabdomyoma (benign)
MMA mostly occurs in males between the ages of 15 and 25. Onset and progression are slow. MMA is seen most frequently in Asia, particularly in Japan and India; it is much less common in North America.
In post-menopausal women, the walls of the vagina become thinner (atrophic vaginitis). The mechanism for the age-related condition is not yet clear, though there are theories that the effect is caused by decreases in estrogen levels. This atrophy, and that of the breasts concurrently, is consistent with the homeostatic (normal development) role of atrophy in general, as after menopause the body has no further functional biological need to maintain the reproductive system which it has permanently shut down.
One drug in test seemed to prevent the type of muscle loss that occurs in immobile, bedridden patients.
Testing on mice showed that it blocked the activity of a protein present in the muscle that is involved in muscle atrophy. However, the drug's long-term effect on the heart precludes its routine use in humans, and other drugs are being sought.
Muscular atrophy decreases qualities of life as the sufferer becomes unable to perform certain tasks or worsen the risks of accidents while performing those (like walking). Muscular atrophy increases the risks of falling in conditions such as inclusion body myositis (IBM) . Muscular atrophy affects a high number of the elderly.
There are many diseases and conditions which cause a decrease in muscle mass, known as atrophy, including activity, as seen when a cast is put on a limb, or upon extended bedrest (which can occur during a prolonged illness); cachexia - which is a syndrome that is a co-morbidity of cancer and congestive heart failure; chronic obstructive pulmonary disease; burns, liver failure, etc., and the wasting Dejerine-Sottas syndrome (HMSN Type III). Glucocorticoids, a class of medications used to treat allergic and other inflammatory conditions can induce muscle atrophy by increasing break-down of muscle proteins. Other syndromes or conditions which can induce skeletal muscle atrophy are liver disease, and starvation.
Emery–Dreifuss muscular dystrophy is a condition that mainly affects muscles used for movement, such as skeletal muscles and also affects the cardiac muscle, it is named after Alan Eglin H. Emery and Fritz E. Dreifuss.
The genetics of congenital muscular dystrophy are autosomal recessive which means two copies of an abnormal gene must be present
for the disease or trait to happen. In the case of collagen VI-deficient, it is autosomal dominant, which means a child could inherit the disease from only one copy of a gene present in only one parent.
The prevalence for congenital muscular dystrophy seems to be between 2.6-4.5 in 10,000 according to Reed, 2009. MDCIA, for example is due to a mutation in the LAMA-2 gene and is involved with the 6q2 chromosome.
The types of Emery–Dreifuss muscular dystrophy are distinguished by their pattern of inheritance: X-linked, autosomal dominant, and autosomal recessive.
- Autosomal dominant "Emery–Dreifuss muscular dystrophy" individuals experience heart problems with weakness (and wasting) of skeletal muscles and Achilles tendon contractures.
- X-linked "Emery–Dreifuss muscular dystrophy" is the result of the EMD gene, with cardiac involvement and some mental retardation.
- Autosomal recessive individuals with this type of the disorder demonstrate cardiac issues, such as arrhythmia. Individuals who acquire EDMD via the autosomal recessive route have an incidence of 1 in 300,000.
Limb girdle syndrome is a term to describe several distinct medical conditions including polymyositis, myopathy associated with endocrine disease, metabolic myopathy, drug-induced myopathy and limb-girdle muscular dystrophy.
Limb girdle syndrome is weakness located and concentrated around the proximal limb muscles. There are many causes, manifestations and treatments.
In terms of the mechanism of congenital muscular dystrophy, one finds that though there are many types of CMD the glycosylation of α-dystroglycan and alterations in those genes that are involved are an important part of this conditions pathophysiology
Myotubular myopathy, also known as centeronuclear myopathy, is recognized by pain during exercise and difficulty walking. People affected by this disease typically are wheel-chair-bound by middle adulthood, have weakness in the muscles involved in eye movement, nerve function disorders, and some form of intellectual disability. Myotubular myopathy is very rare, with less than 50 families currently affected.
Genetically, myotubular myopathy can have two causes: autosomal dominant and autosomal recessive. When caused by a mutation in the DNM2 gene, the disorder is autosomal dominant, meaning it can be passed on by one mutated gene. When the mutation takes place in the BIN1 gene, the disease is instead autosomal recessive, and both genes must be mutated for the disease to be inherited. Autosomal recessive onset is most common.
The importance of correctly recognizing progressive muscular atrophy as opposed to ALS is important for several reasons.
- 1) the prognosis is a little better. A recent study found the 5-year survival rate in PMA to be 33% (vs 20% in ALS) and the 10-year survival rate to be 12% (vs 6% in ALS).
- 2) Patients with PMA do not suffer from the cognitive change identified in certain groups of patients with MND.
- 3) Because PMA patients do not have UMN signs, they usually do not meet the "World Federation of Neurology El Escorial Research Criteria" for “Definite” or “Probable” ALS and so are ineligible to participate in the majority of clinical research trials such as drugs trials or brain scans.
- 4) Because of its rarity (even compared to ALS) and confusion about the condition, some insurance policies or local healthcare policies may not recognize PMA as being the life-changing illness that it is. In cases where being classified as being PMA rather than ALS is likely to restrict access to services, it may be preferable to be diagnosed as "slowly progressive ALS" or "lower motor neuron predominant" ALS.
An initial diagnosis of PMA could turn out to be slowly progressive ALS many years later, sometimes even decades after the initial diagnosis. The occurrence of upper motor neurone symptoms such as brisk reflexes, spasticity, or a Babinski sign would indicate a progression to ALS; the correct diagnosis is also occasionally made on autopsy.
The prognosis of this sub-type of MD indicates that the affected individual may eventually have feeding difficulties. Surgery, at some point, might be an option for scoliosis.
Scoliosis which is a sideways curve of the persons vertebrate, is determined by a variety of factors, including the degree (mild or severe), in which case if possible a brace might be used by the individual
Central core disease or central core myopathy was first described in 1956 and usually presents in infancy or early childhood as non-progressive mild proximal weakness that persists throughout life. Central core disease is believed to be more prevalent than currently reported, as it is hard to recognize and often misdiagnosed in early childhood. Central core disease has been found to be allelic with malignant hyperthermia, which is a life-threatening anesthetic reaction that causes a rise in body temperature, muscular rigidity and muscular breakdown, grossly elevated creatine kinase, and acidosis. Central core disease is caused by a mutation in the RYR1 gene.
DSMA1 is usually fatal in early childhood. The patient, normally a child, suffers a progressive degradation of the respiratory system until respiratory failure. There is no consensus on the life expectancy in DSMA1 despite a number of studies being conducted. A small number of patients survive past two years of age but they lack signs of diaphragmatic paralysis or their breathing is dependent on a ventilation system.
Several gene mutations have been identified in patients with camptocormia. These include the RYR1 gene in axial myopathy, the DMPK gene in myotonic dystrophy, and genes related to dysferlinopathy and Parkinson’s disease. These genes could serve as targets for gene therapy to treat the condition in the years to come.