Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The morbidity associated with DIPNECH is due to the associated obstructive lung disease. The lung disease tends to be slowly progressive, but given enough time can lead to significant disability and require supplemental oxygen therapy. There have been reports of lung transplantation in the setting of end-stage DIPNECH.
According to a recent study, the main risk factors for RA-ILD are advancing age, male sex, greater RA disease activity, rheumatoid factor (RF) positivity, and elevated titers of anticitrullinated protein antibodies such as anticyclic citrullinated peptide. Cigarette smoking also appears to increase risk of RA-ILD, especially in patients with human leukocyte antigen DRB1.
A recently published retrospective study by a team from Beijing Chao-Yang Hospital in Beijing, China, supported three of the risk factors listed for RA-ILD and identified an additional risk factor. In that study of 550 RA patients, logistic regression analysis of data collected on the 237 (43%) with ILD revealed that age, smoking, RF positivity, and elevated lactate dehydrogenase closely correlated with ILD.
Recent studies have identified risk factors for disease progression and mortality. A retrospective study of 167 patients with RA-ILD determined that the usual interstitial pneumonia (UIP) pattern on high-resolution computed tomography (HRCT) was a risk factor for progression, as were severe disease upon diagnosis and rate of change in pulmonary function test results in the first 6 months after diagnosis.
A study of 59 RA-ILD patients found no median survival difference between those with the UIP pattern and those without it. But the UIP group had more deaths, hospital admissions, need for supplemental oxygen, and decline in lung function.
To date there have been no clinical trials to determine effective treatment for this disease. Some patients have been treated with somatostatin analogs. Although the cough associated with DIPNECH tends to diminish on this treatment, improvement in pulmonary function has not been clearly demonstrated. There are also reports of symptomatic treatment with long- and short-acting beta agonists. Although steroids, both oral and inhaled, have been used in the setting of DIPNECH, there is no clear improvement with this treatment.
It is not uncommon for typical carcinoids to arise within DIPNECH. Due to presence of these tumors, DIPNECH is classified as a pre-malignant condition. Although there have been reports of atypical carcinoids with local lymph node involvement, there are no reports of more aggressive neuroendocrine tumors, such as large cell neuroendocrine or small cell lung cancer, associated with DIPNECH. When isolated bronchial carcinoids are diagnosed, oncology guidelines recommend surgical resection with lymph node sampling. However, as multiple carcinoids may develop in the setting of DIPNECH, a more conservative approach is often considered to preserve lung function.
ILD may be classified according to the cause. One method of classification is as follows:
1. Inhaled substances
- Inorganic
- Silicosis
- Asbestosis
- Berylliosis
- printing workers (eg. carbon bblack, ink mist)
- Organic
- Hypersensitivity pneumonitis
2. Drug-induced
- Antibiotics
- Chemotherapeutic drugs
- Antiarrhythmic agents
3. Connective tissue and Autoimmune diseases
- Rheumatoid arthritis
- Systemic lupus erythematosus
- Systemic sclerosis
- Polymyositis
- Dermatomyositis
4. Infection
- Atypical pneumonia
- Pneumocystis pneumonia (PCP)
- Tuberculosis
- "Chlamydia" trachomatis
- Respiratory Syncytial Virus
5. Idiopathic
- Sarcoidosis
- Idiopathic pulmonary fibrosis
- Hamman-Rich syndrome
- Antisynthetase syndrome
6. Malignancy
- Lymphangitic carcinomatosis
7. Predominantly in children
- Diffuse developmental disorders
- Growth abnormalities deficient alveolarisation
- Infant conditions of undefined cause
- ILD related to alveolar surfactant region
Tumor-like disorders of the lung pleura are a group of conditions that on initial radiological studies might be confused with malignant lesions. Radiologists must be aware of these conditions in order to avoid misdiagnosing patients. Examples of such lesions are: pleural plaques, thoracic splenosis, catamenial pneumothorax, pleural pseudotumor, diffuse pleural thickening, diffuse pulmonary lymphangiomatosis and Erdheim-Chester Disease.
Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of lung diseases affecting the interstitium (the tissue and space around the air sacs of the lungs). It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage. But in interstitial lung disease, the repair process goes awry and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The term ILD is used to distinguish these diseases from obstructive airways diseases.
In children, several unique forms of ILD exist which are specific for the young age groups. The acronym chILD is used for this group of diseases and is derived from the English name, Children’s Interstitial Lung Diseases – chILD.
Prolonged ILD may result in pulmonary fibrosis, but this is not always the case. Idiopathic pulmonary fibrosis is interstitial lung disease for which no obvious cause can be identified (idiopathic), and is associated with typical findings both radiographic (basal and pleural based fibrosis with honeycombing) and pathologic (temporally and spatially heterogeneous fibrosis, histopathologic honeycombing and fibroblastic foci).
In 2013 interstitial lung disease affected 595,000 people globally. This resulted in 471,000 deaths.
The exact cause of rheumatoid lung disease is unknown. However, associated factors could be due largely to smoking. Sometimes, the medicines used to treat rheumatoid arthritis, especially methotrexate, may result in lung disease.
Prevention's:
- Stop smoking: Chemicals found in cigarettes can irritate already delicate lung tissue, leading to further complications.
- Having regular checkups: The doctor could listen to lungs and monitor breathing, because lung problems that are detected early can be easier to treat.
Alveolar lung diseases, are a group of diseases that mainly affect the alveoli of the lungs.
Ectopic endometrial tissue reaches the pleural space of the lung or the right hemi-diaphragmatic region and erodes the visceral pleura, causing the formation of a spontaneous pneumothorax. The condition is often cyclical, due to its associations with the beginning of the menstrual cycle.
Affected persons usually present with recurrent spontaneous pneumothorax associated with the onset of the menstrual cycle. Additionally, chest/scapular pain and/or evidence of endometriosis in the abdominopelvic cavity are other manifestations.
On radiological studies, pneumothorax is visualized using conventional chest x-rays and CT scans. In 90% of the cases, the pneumothorax is located on the right side. In some cases, small nodules can be seen in the pleura using CT scans. Confirmation can be done using video assisted thoracoscopic surgery (VATS).
Treatment for the pneumothorax is with chest tube placement. As for the ectopic endometrial tissue, therapy with gonadotropin-releasing–hormone or resection of the lesions can improve symptoms.
Alveolar lung disease may be divided into acute or chronic. Causes of acute alveolar lung disease include pulmonary edema (cardiogenic or neurogenic), pneumonia (bacterial or viral), pulmonary embolism, systemic lupus erythematosus, bleeding in the lungs (e.g., Goodpasture syndrome), idiopathic pulmonary hemosiderosis, and granulomatosis with polyangiitis.
Chronic alveolar lung disease can be caused by pulmonary alveolar proteinosis, alveolar cell carcinoma, mineral oil pneumonia, sarcoidosis (alveolar form), lymphoma, tuberculosis, metastases, or desquamative interstitial pneumonia.
DPB has its highest prevalence among the Japanese, at 11 per 100,000 population. Korean, Chinese, and Thai individuals with the disease have been reported as well. A genetic predisposition among East Asians is suggested. The disease is more common in males, with the male to female ratio at 1.4–2:1 (or about 5 men to 3 women). The average onset of the disease is around age 40, and two-thirds of those affected are non-smokers, although smoking is not believed to be a cause. The presence of HLA-Bw54 increases the risk of diffuse panbronchiolitis 13.3-fold.
In Europe and the Americas, a relatively small number of DPB cases have been reported in Asian immigrants and residents, as well as in individuals of non-Asian ancestry. Misdiagnosis has occurred in the West owing to less recognition of the disease than in Asian countries. Relative to the large number of Asians living in the west, the small number of them thought to be affected by DPB suggests non-genetic factors may play some role in its cause. This rarity seen in Western Asians may also be partly associated with misdiagnosis.
OPA has been found in most countries where sheep are farmed, with the exception of Australia and New Zealand. OPA has been eradicated in Iceland.
No breed or sex of sheep appears to be predisposed to OPA. Most affected sheep show signs at 2 to 4 years of age.
OPA is not a notifiable disease, and therefore it is difficult to assess its prevalence.
The presence of rheumatoid arthritis alters how a person's immune system responds to foreign materials, such as dust from a coal mine. When a person with rheumatoid arthritis is exposed to such offensive materials, they are at an increased risk of developing pneumoconiosis.
Caplan syndrome occurs only in patients with both RA and pneumoconiosis related to mining dust (coal, asbestos, silica). The condition occurs in miners (especially those working in anthracite coal-mines), asbestosis, silicosis and other pneumoconioses. There is probably also a genetic predisposition, and smoking is thought to be an aggravating factor.
Untreated DPB leads to bronchiectasis, respiratory failure, and death. A journal report from 1983 indicated that untreated DPB had a five-year survival rate of 62.1%, while the 10-year survival rate was 33.2%. With erythromycin treatment, individuals with DPB now have a much longer life expectancy due to better management of symptoms, delay of progression, and prevention of associated infections like "P. aeruginosa". The 10-year survival rate for treated DPB is about 90%. In DPB cases where treatment has resulted in significant improvement, which sometimes happens after about two years, treatment has been allowed to end for a while. However, individuals allowed to stop treatment during this time are closely monitored. As DPB has been proven to recur, erythromycin therapy must be promptly resumed once disease symptoms begin to reappear. In spite of the improved prognosis when treated, DPB currently has no known cure.
Genetic changes are very high in SCLC and LCNEC, but usually low for TC, intermediate for AC.
Pneumoconiosis is an occupational lung disease and a restrictive lung disease caused by the inhalation of dust, often in mines and from agriculture.
In 2013, it resulted in 260,000 deaths, up from 251,000 deaths in 1990. Of these deaths, 46,000 were due to silicosis, 24,000 due to asbestosis and 25,000 due to coal workers pneumoconiosis.
A pulmonary hematoma is a collection of blood within the tissue of the lung. It may result when a pulmonary laceration fills with blood. A lung laceration filled with air is called a pneumatocele. In some cases, both pneumatoceles and hematomas exist in the same injured lung. Pulmonary hematomas take longer to heal than simple pneumatoceles and commonly leave the lungs scarred. A pulmonary contusion is another cause of bleeding within the lung tissue, but these result from microhemorrhages, multiple small bleeds, and the bleeding is not a discrete mass but rather occurs within the lung tissue. An indication of more severe damage to the lung than pulmonary contusion, a hematoma also takes longer to clear. Unlike contusions, hematomas do not usually interfere with gas exchange in the lung, but they do increase the risk of infection and abscess formation.
SIPE is estimated to occur in 1-2% of competitive open-water swimmers, with 1.4% of triathletes, 1.8% of combat swimmers and 1.1% of divers and swimmers reported in the literature.
Birt-Hogg-Dubé Syndrome patients, families, and caregivers are encouraged to join the NIH Rare Lung Diseases Consortium Contact Registry. This is a privacy protected site that provides up-to-date information for individuals interested in the latest scientific news, trials, and treatments related to rare lung diseases.
Pulmonary neuroendocrine tumors are neuroendocrine tumors localized to the lung: bronchus or pulmonary parenchyma.
Pulmonary neuroendocrine tumors include a spectrum of tumors from the low-grade typical pulmonary carcinoid tumor and intermediate-grade atypical pulmonary carcinoid tumor to the high-grade pulmonary large cell neuroendocrine carcinoma (LCNEC) and pulmonary small cell carcinoma (SCLC), with significant clinical, epidemiologic and genetic differences.
The prognosis of patients with FA as a whole is considered to be better than that of most other forms of non-small cell carcinoma, including biphasic pulmonary blastoma.
Management has generally been reported to be conservative, though deaths have been reported.
- Removal from water
- Observation
- Diuretics and / or Oxygen when necessary
- Episodes are generally self-limiting in the absence of other medical problems
It was identified in 1985, although its symptoms had been noted before but not recognised as a separate lung disease. The risk of BOOP is higher for people with inflammatory diseases like lupus, dermatomyositis, rheumatoid arthritis, and scleroderma.
Unfortunately for non-healthcare professionals, healthcare professionals can use many different words for pulmonary toxicity and still understand each other completely. Yet, for laypersons, this can lead to some difficulties while searching for information about pulmonary toxicity (or about any other side effect). Here are some words that are rather similar to each other in meaning for healthcare professionals. Side effect = adverse event (AE) = adverse drug reaction (ADR) = adverse reaction = toxicity. Pulmonary = lung. Pulmonary toxicity = pulmonary injury = lung injury = lung toxicity. And instead of pulmonary toxicity (a general term), the specific name of the specific side effect in question can be used, e.g. pneumonitis or radiation pneumonitis. Any combination is also possible, of course.