Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Prognosis is separated into three groups.
- Stage I osteosarcoma is rare and includes parosteal osteosarcoma or low-grade central osteosarcoma. It has an excellent prognosis (>90%) with wide resection.
- Stage II prognosis depends on the site of the tumor (proximal tibia, femur, pelvis, etc.), size of the tumor mass, and the degree of necrosis from neoadjuvant chemotherapy. Other pathological factors such as the degree of p-glycoprotein, whether the tumor is cxcr4-positive, or Her2-positive are also important, as these are associated with distant metastases to the lung. The prognosis for patients with metastatic osteosarcoma improves with longer times to metastases, (more than 12 months to 4 months), a smaller number of metastases, and their resectability. It is better to have fewer metastases than longer time to metastases. Those with a longer length of time (more than 24 months) and few nodules (two or fewer) have the best prognosis, with a two-year survival after the metastases of 50%, five-year of 40%, and 10-year of 20%. If metastases are both local and regional, the prognosis is worse.
- Initial presentation of stage III osteosarcoma with lung metastases depends on the resectability of the primary tumor and lung nodules, degree of necrosis of the primary tumor, and maybe the number of metastases. Overall survival prognosis is about 30%.
Deaths due to malignant neoplasms of the bones and joints account for an unknown number of childhood cancer deaths. Mortality rates due to osteosarcoma have been declining at about 1.3% per year. Long-term survival probabilities for osteosarcoma have improved dramatically during the late 20th century and approximated 68% in 2009.
Staging attempts to distinguish patients with localized from those with metastatic disease. Most commonly, metastases occur in the chest, bone and/or bone marrow. Less common sites include the central nervous system and lymph nodes.
Five-year survival for localized disease is 70% to 80% when treated with chemotherapy. Prior to the use of multi-drug chemotherapy, long-term survival was less than 10%. The development of multi-disciplinary therapy with chemotherapy, irradiation, and surgery has increased current long-term survival rates in most clinical centers to greater than 50%. However, some sources state it is 25–30%.
Retrospective research in patients led by Idriss M. Bennani-Baiti (Cancer Epigenetics Society) showed that two chemokine receptors, CXCR4 and CXCR7, can be used as molecular prognosis factors. Patients who express low levels of both chemokine receptors have the highest odds of long-term survival with >90% survival at 5 years post-diagnosis versus <30% survival at 5 years for patients with very high expression levels of both receptors.
Ewing's sarcomas represent 16% of primary bone sarcomas. In the United States, they are most common in the second decade of life, with a rate of 0.3 cases per million in children under 3 years of age, and as high as 4.6 cases per million in adolescents aged 15–19 years. Internationally, the annual incidence rate averages less than 2 cases per million children. In the United Kingdom, an average of six children per year are diagnosed, mainly males in early stages of puberty. Due to the prevalence of diagnosis during teenage years, a link may exist between the onset of puberty and the early stages of this disease, although no research confirms this hypothesis.
The oldest known patient diagnosed was at age 76, from the Mercer County, New Jersey, area.
A grouping of three unrelated teenagers in Wake Forest, NC, have been diagnosed with Ewing's sarcoma. All three children were diagnosed in 2011 and all attended the same temporary classroom together while the school underwent renovation. A fourth teenager living nearby was diagnosed in 2009. The odds of this grouping are considered significant.
Ewing's sarcoma shows striking differences in incidence across human populations and is about 10- to 20-fold more common in populations from European descent as compared to Africans. Consistently, a genome-wide association study (GWAS) conducted in several hundreds European individuals with Ewing's sarcoma and genetically-matched healthy controls identified three susceptibility loci located on chromosomes 1, 10 and 15. A continuative study discovered that the Ewing's sarcoma susceptibility gene "EGR2", which is located within the chromosome 10 susceptibility locus, is regulated by the "EWSR1-FLI1" fusion oncogene via a GGAA-microsatellite.
Ewing's sarcoma is the second most common bone cancer in children and adolescents, with poor prognosis and outcome in ~70% of initial diagnoses and 10–15% of relapses.
Osteosarcoma is the most common bone tumor in dogs and typically afflicts middle-aged large and giant breed dogs such as Irish Wolfhounds, Greyhounds, German Shepherds, Rottweilers, mountain breeds (Great Pyrenees, St. Bernard, Leonberger, Newfoundland), Doberman Pinschers and Great Danes. It has a 10-fold greater incidence in dogs than humans. A hereditary base has been shown in St. Bernard dogs. Spayed/neutered dogs have twice the risk of intact ones to develop osteosarcoma. Infestation with the parasite Spirocerca lupi can cause osteosarcoma of the esophagus.
Giant-cell tumor of the bone accounts for 4-5% of primary bone tumors and about 20% of benign bone tumors. However, significantly higher incidence rates are observed in Asia, where it constitutes about 20% of all primary bone tumors in China. It is slightly more common in females, has a predilection for the epiphyseal/metaphyseal region of long bones, and generally occurs in the third to fourth decade. Although classified as a benign tumor, GCTOB has been observed to metastesize to the lungs in up to 5% of cases, and in rare instances (1-3%) can transform to the malignant sarcoma phenotype with equal disease outcome.
Sarcomas are given a number of different names based on the type of tissue that they most closely resemble. For example, osteosarcoma resembles bone, chondrosarcoma resembles cartilage, liposarcoma resembles fat, and leiomyosarcoma resembles smooth muscle.
A sarcoma is a cancer that arises from transformed cells of mesenchymal origin. Thus, malignant tumors made of cancellous bone, cartilage, fat, muscle, vascular, or hematopoietic tissues are, by definition, considered sarcomas. This is in contrast to a malignant tumor originating from epithelial cells, which are termed carcinoma. Human sarcomas are quite rare. Common malignancies, such as breast, colon, and lung cancer, are almost always carcinoma. The term is from the Greek "sarx" meaning "flesh".
A number of tumors have giant cells, but are not true benign giant-cell tumors. These include, aneurysmal bone cyst, chondroblastoma, simple bone cyst, osteoid osteoma, osteoblastoma, osteosarcoma, giant-cell reparative granuloma, and brown tumor of hyperparathyroidism.
The Center for Disease Control and Prevention (CDC) included certain types of non-Hodgkin's lymphoma as AIDS-defining cancers in 1987. Immune suppression rather than HIV itself is implicated in the pathogenesis of this malignancy, with a clear correlation between the degree of immune suppression and the risk of developing NHL. Additionally, other retroviruses such as HTLV may be spread by the same mechanisms that spread HIV, leading to an increased rate of co-infection. The natural history of HIV infection has been greatly changed over time. As a consequence, rates of non-Hodgkin's lymphoma (NHL) in people infected with HIV has significantly declined in recent years.
The most common chemotherapy used for non-Hodgkin lymphoma is R-CHOP.
Untreated dogs have an average survival time of 60 days. Lymphoma with a histologic high grade generally respond better to treatment but have shorter survival times than dogs with low grade lymphoma. Dogs with B-lymphocyte tumors have a longer survival time than T-lymphocyte tumors. Mediastinal lymphoma has a poorer prognosis than other types, especially those with hypercalcemia. Clinical stage and substage have some prognostic value, with poorer prognosis associated with Stage V disease, and with substage b (clinical illness at time of presentation).
Chemotherapy is the mainstay of treatment for lymphoma in cats. Most of the drugs used in dogs are used in cats, but the most common protocol uses cyclophosphamide, vincristine, and prednisone. Gastrointestinal lymphoma has also commonly been treated with a combination of prednisolone and high dose pulse chlorambucil with success. The white blood cell count must be monitored. Remission and survival times are comparable to dogs. Lower stage lymphoma has a better prognosis. Multicentric lymphoma has a better response to treatment than the gastrointestinal form, but infection with FeLV worsens the prognosis.
About 75% of cats treated with chemotherapy for lymphoma go into remission. Unfortunately, after an initial remission, most cats experience a relapse, after which they have a median survival of 6 months. However, about one-third of cats treated with chemotherapy will survive more than 2 years after diagnosis; a small number of these cats may be cured of their disease. Untreated, most cats with lymphoma die within 4–6 weeks. Most cats tolerate their chemotherapy well, and fewer than 5% have severe side effects. Cats do not lose their fur from chemotherapy, though loss of whiskers is possible. Other side effects include low white blood cell count, vomiting, loss of appetite, diarrhea, or fatigue. These can typically be controlled well, and most cats have a good quality of life during treatment. If a cat relapses after attaining remission, the cat can be treated with different chemotherapy drugs to try for a second remission. The chances of a second remission are much lower than the chances of obtaining a first, and the second remission is often shorter than the first.
In the US, Osteoblastomas account for only 0.5-2% of all primary bone tumors and only 14% of benign bone tumors making it a relatively rare form of bone tumor.
In regards to morbidity and mortality, conventional osteoblastoma is a benign lesion with little associated morbidity. However, the tumor may be painful, and spinal lesions may be associated with scoliosis and neurologic manifestations. Metastases and even death have been reported with the controversial aggressive variant, which can behave in a fashion similar to that of osteosarcoma. This variant is also more likely to recur after surgery than is conventional osteoblastoma.
Osteoblastoma affects more males than it does females, with a ratio of 2-3:1 respectively. Osteoblastoma can occur in persons of any age, although the tumors predominantly affect the younger population (around 80% of these tumors occurs in persons under the age of 30). No racial predilection is recognized.
It usually presents in the vertebral column or long bones. Approximately 40% of all osteoblastomas are located in the spine. The tumors usually involve the posterior elements, and 17% of spinal osteoblastomas are found in the sacrum. The long tubular bones are another common site of involvement, with a lower extremity preponderance. Osteoblastoma of the long tubular bones is often diaphyseal, and fewer are located in the metaphysis. Epiphyseal involvement is extremely rare. Although other sites are rarely affected, several bones in the abdomen and extremities have been reported as sites of osteoblastoma tumors.
Chemotherapy with CHOP, infusional EPOCH, hyperCVAD, and CODOX-M/IVAC is often used. The prognosis is generally poor, for example 6 to 7 months and 14 months.
Familial and genetic factors are identified in 5-15% of childhood cancer cases. In <5-10% of cases, there are known environmental exposures and exogenous factors, such as prenatal exposure to tobacco, X-rays, or certain medications. For the remaining 75-90% of cases, however, the individual causes remain unknown. In most cases, as in carcinogenesis in general, the cancers are assumed to involve multiple risk factors and variables.
Aspects that make the risk factors of childhood cancer different from those seen in adult cancers include:
- Different, and sometimes unique, exposures to environmental hazards. Children must often rely on adults to protect them from toxic environmental agents.
- Immature physiological systems to clear or metabolize environmental substances
- The growth and development of children in phases known as "developmental windows" result in certain "critical windows of vulnerability".
Also, a longer life expectancy in children avails for a longer time to manifest cancer processes with long latency periods, increasing the risk of developing some cancer types later in life.
There are preventable causes of childhood malignancy, such as delivery overuse and misuse of ionizing radiation through computed tomography scans when the test is not indicated or when adult protocols are used.
The most common bone tumor is called osteosarcoma, and typically affects middle-age to older dogs of large and giant breeds. Osteosarcoma is less common in cats. Osteosarcoma is an aggressive cancer that can develop in any bone of the body but the majority is seen in the limbs (e.g. long bones such as radius, humerus, femur, and tibia).
Adult survivors of childhood cancer have some physical, psychological, and social difficulties.
Premature heart disease is a major long-term complication in adult survivors of childhood cancer. Adult survivors are eight times more likely to die of heart disease than other people, and more than half of children treated for cancer develop some type of cardiac abnormality, although this may be asymptomatic or too mild to qualify for a clinical diagnosis of heart disease.
Plasmablastic lymphoma is a type of large B-cell lymphoma, recognized in the WHO 2008 classification. It is CD20 negative, and has an immunophenotype that resembles plasma cells. In formal use, lymphomas with plasmablastic immunophenotype such as primary effusion lymphoma, ALK+ large B-cell lymphoma, large B-cell lymphoma arising in HHV8-associated multicentric Castleman's disease and extracavitary HHV–8-positive lymphoma are not part of this category, although sometimes the literature has confused this point.
A bone tumor (also spelled bone tumour) is a neoplastic growth of tissue in bone. Abnormal growths found in the bone can be either benign (noncancerous) or malignant (cancerous).
Average five-year survival in the United States after being diagnosed with bone and joint cancer is 67%.
Large B-cell lymphoma arising in HHV8-associated multicentric Castleman's disease is a type of large B-cell lymphoma, recognized in the WHO 2008 classification. It is sometimes called the plasmablastic form of multicentric Castleman disease. It has sometimes been confused with plasmablastic lymphoma in the literature, although that is a dissimilar specific entity. It has variable CD20 expression and unmutated immunoglobulin variable region genes.
The cause of osteoblastoma is unknown. Histologically, osteoblastomas are similar to osteoid osteomas, producing both osteoid and primitive woven bone amidst fibrovascular connective tissue, the difference being that osteoblastoma can grow larger than 2.0 cm in diameter while osteoid osteomas cannot. Although the tumor is usually considered benign, a controversial aggressive variant has been described in the literature, with histologic features similar to those of malignant tumors such as an osteosarcoma.
Depending on the pet's unique condition, there are several treatment options, including surgery, chemotherapy and radiation therapy. Treating the pain adequately is also of crucial importance to improve the pet's quality of life, especially if amputation is not performed.
Castleman disease (CD) is a lymphoproliferative disorder of unknown cause. CD is associated with an increased risk of B-cell lymphoma.
Human herpesvirus 8 (HHV-8), also known as Kaposi sarcoma-associated herpesvirus (KSHV) has been found in some cases of multicentric Castleman disease (MCD). The HHV8 can give rise to an increased number of plasmablast cells within the mantle zone of B-cell follicles. These plasmablasts express IgM-immunoglobulin light chains, most often of lambda subtype. These plasmablasts can give rise to a spectrum of abnormalities including progression to microlymphoma (microscopic clusters of plasmablast cells) or clinical lymphoma.
This type of lymphoma is predominantly seen in acquired immunodeficiencies, including acquired immunodeficiency syndrome (AIDS) but it can also occur in immunosuppression such as with organ transplantation or the elderly. The plasmablasts do not show rearranged immunoglobulin genes, and typically lack EBV infection.
The disease predominantly affects lymph nodes and the spleen, a pattern dissimilar to plasmablastic lymphoma of the oral cavity of AIDS which is not associated with HHV-8 infection. Despite traditional chemotherapy with CHOP (cyclophosphamide, doxorubicin, prednisone, vincristine), and the possible addition of antiviral therapy and inhibition of specific cellular targets including the use of rituximab, the prognosis in this lymphoma has been poor.
This lymphoma subtype has sometimes been confused with plasmablastic lymphoma in the literature, although that is a dissimilar specific entity. Similarly, this subtype is considered distinct from other lymphomas which have a plasmablastic immunophenotype such as primary effusion lymphoma, ALK+ large B-cell lymphoma, and extracavitary HHV–8-positive lymphoma.
HHV8 is also associated with Kaposi's sarcoma and with another subtype of lymphoma, primary effusion lymphoma, previously called body cavity-based lymphoma.
Bone tumors may be classified as "primary tumors", which originate in bone or from bone-derived cells and tissues, and "secondary tumors" which originate in other sites and spread (metastasize) to the skeleton. Carcinomas of the prostate, breasts, lungs, thyroid, and kidneys are the carcinomas that most commonly metastasize to bone. Secondary malignant bone tumors are estimated to be 50 to 100 times as common as primary bone cancers.
Infantile myofibromatosis (also known as "Congenital generalized fibromatosis," and "Congenital multicentric fibromatosis") is the most common fibrous tumor of infancy, in which eighty percent of patients have solitary lesions with half of these occurring on the head and neck, and 60% are present at or soon after birth. Less commonly, infantile myofibromatosis presents as multiple lesions of skin, muscle, and bone with about 1/3 of these cases also having lesions in their visceral organs. All of these cases have an excellent prognosis with their tumors sometimes regressing spontaneously except for those cases in which there is visceral involvement where the prognosis is poor. Infantile myofibromatosis and the classic form of mesoblastic nephroma have been suggested to be the same disease because of their very similar histology. However, studies on the distribution of cell-type markers (i.e. cyclin D1 and Beta-catenin) indicate that the two neoplasms likely have different cellular origins.