Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Although the etiology is unclear and it is speculated to be multifactorial. Contributing factors may include the following:
1. children born preterm and those with poor general health or systemic conditions in their first 3 years may develop MIH.
2. environmental changes
3. exposure to dioxine by prolonged breast-feeding could lead to an increase in the risk of MIH
4. respiratory diseases and oxygen shortage of the ameloblasts
5. oxygen shortage combined with low birth weight
The prognosis for impacted wisdom teeth depends on the depth of the impaction. When they lack a communication to the mouth, the main risk is the chance of cyst or neoplasm formation which is relatively uncommon.
Once communicating with the mouth, the onset of disease or symptoms cannot be predicted but the chance of it does increase with age. Less than 2% of wisdom teeth are free of either periodontal disease or caries by age 65. Further, several studies have found that between 30% – 60% of people with previously asymptomatic impacted wisdom teeth will have them extracted due to symptoms or disease, 4–12 years after initial examination.
Extraction of the wisdom teeth removes the disease on the wisdom tooth itself and also appears to improve the periodontal status of the second molar, although this benefit diminishes beyond the age of 25.
Smoking and tobacco use of any kind are associated with increased risk of dry socket. This may be partially due to the vasoconstrictive action of nicotine on small blood vessels. Abstaining from smoking in the days immediately following a dental extraction reduces the risk of a dry socket occurring.
There is evidence of hereditary factors along with some evidence of environmental factors leading to this condition. While a single excess tooth is relatively common, multiple hyperdontia is rare in people with no other associated diseases or syndromes. Many supernumerary teeth never erupt, but they may delay eruption of nearby teeth or cause other dental or orthodontic problems. Molar-type extra teeth are the rarest form. Dental X-rays are often used to diagnose hyperdontia.
It is suggested that supernumerary teeth develop from a third tooth bud arising from the dental lamina near the regular tooth bud or possibly from splitting the regular tooth bud itself. Supernumerary teeth in deciduous (baby) teeth are less common than in permanent teeth.
Few studies have looked at the percentage of the time wisdom teeth are present or the rate of wisdom teeth eruption. The lack of up to five teeth (excluding third molars, i.e. wisdom teeth) is termed hypodontia. Missing third molars occur in 9-30% of studied populations.
One large scale study on a group of young adults in New Zealand showed 95.6% had at least 1 wisdom tooth with an eruption rate of 15% in the maxilla and 20% in the mandible. Another study on 5000 army recruits found 10,767 impacted wisdom teeth. The frequency of impacted lower third molars has been found to be 72% and the frequency of retained impacted wisdom teeth that are free of disease and symptoms is estimated at 11.6% to 29% which drops with age.
The incidence of wisdom tooth removal was estimated to be 4 per 1000 person years in England and Wales prior to the 2000 NICE guidelines.
Dry socket is more likely to occur following a difficult tooth extraction. It is thought that excessive force applied to the tooth, or excessive movement of the tooth burnishes the bony walls of the socket and crushes blood vessels, impairing the repair process. It has also been shown that dry socket is more likely to occur when an inexperienced surgeon performed the extraction, possibly because excessive force or excessive tooth movements are used.
Another abnormal condition is hypodontia, in which there are fewer than the usual number of teeth.
Hyperdontia is seen in a number of disorders, including Gardner's syndrome and cleidocranial dysostosis, where multiple supernumerary teeth are seen that are usually impacted.
Reduced salivary flow rate is associated with increased caries since the buffering capability of saliva is not present to counterbalance the acidic environment created by certain foods. As a result, medical conditions that reduce the amount of saliva produced by salivary glands, in particular the submandibular gland and parotid gland, are likely to lead to dry mouth and thus to widespread tooth decay. Examples include Sjögren's syndrome, diabetes mellitus, diabetes insipidus, and sarcoidosis. Medications, such as antihistamines and antidepressants, can also impair salivary flow. Stimulants, most notoriously methylamphetamine, also occlude the flow of saliva to an extreme degree. This is known as meth mouth. Tetrahydrocannabinol (THC), the active chemical substance in cannabis, also causes a nearly complete occlusion of salivation, known in colloquial terms as "cotton mouth". Moreover, 63% of the most commonly prescribed medications in the United States list dry mouth as a known side-effect. Radiation therapy of the head and neck may also damage the cells in salivary glands, somewhat increasing the likelihood of caries formation.
Susceptibility to caries can be related to altered metabolism in the tooth, in particular to fluid flow in the dentin. Experiments on rats have shown that a high-sucrose, cariogenic diet "significantly suppresses the rate of fluid motion" in dentin.
The use of tobacco may also increase the risk for caries formation. Some brands of smokeless tobacco contain high sugar content, increasing susceptibility to caries. Tobacco use is a significant risk factor for periodontal disease, which can cause the gingiva to recede. As the gingiva loses attachment to the teeth due to gingival recession, the root surface becomes more visible in the mouth. If this occurs, root caries is a concern since the cementum covering the roots of teeth is more easily demineralized by acids than enamel. Currently, there is not enough evidence to support a causal relationship between smoking and coronal caries, but evidence does suggest a relationship between smoking and root-surface caries.
Exposure of children to secondhand tobacco smoke is associated with tooth decay.
Intrauterine and neonatal lead exposure promote tooth decay. Besides lead, all atoms with electrical charge and ionic radius similar to bivalent calcium,
such as cadmium, mimic the calcium ion and therefore exposure to them may promote tooth decay.
Poverty is also a significant social determinant for oral health. Dental caries have been linked with lower socio-economic status and can be considered a disease of poverty.
Forms are available for risk assessment for caries when treating dental cases; this system using the evidence-based Caries Management by Risk Assessment (CAMBRA). It is still unknown if the identification of high-risk individuals can lead to more effective long-term patient management that prevents caries initiation and arrests or reverses the progression of lesions.
Saliva also contains iodine and EGF. EGF results effective in cellular proliferation, differentiation and survival. Salivary EGF, which seems also regulated by dietary inorganic iodine, plays an important physiological role in the maintenance of oral (and gastro-oesophageal) tissue integrity, and, on the other hand, iodine is effective in prevention of dental caries and oral health.
Extra teeth, lost teeth, impacted teeth, or abnormally shaped teeth have been cited as causes of malocclusion. A small underdeveloped jaw, caused by lack of masticatory stress during childhood, can cause tooth overcrowding. Ill-fitting dental fillings, crowns, appliances, retainers, or braces as well as misalignment of jaw fractures after a severe injury are other causes. Tumors of the mouth and jaw, thumb sucking, tongue thrusting, pacifier use beyond age 3, and prolonged use of a bottle have also been identified as causes.
In an experiment on two groups of rock hyraxes fed hardened or softened versions of the same foods, the animals fed softer food had significantly narrower and shorter faces and thinner and shorter mandibles than animals fed hard food. Experiments have shown similar results in other animals, including primates, supporting the theory that masticatory stress during childhood affects jaw development. Several studies have shown this effect in humans. Children chewed a hard resinous gum for two hours a day and showed increased facial growth.
During the transition to agriculture, the shape of the human mandible went through a series of changes. The mandible underwent a complex series of shape changes not matched by the teeth, leading to incongruity between dental and mandibular form. These changes in human skulls may have been "driven by the decreasing bite forces required to chew the processed foods eaten once humans switched to growing different types of cereals, milking and herding animals about 10,000 years ago."
The distribution of disease in those affected with MIH can vary greatly. It can be common for the enamel of one molar to be affected while the enamel of the contralateral molar is clinically unaffected, or with minor defects only.
There are certain diseases and disorders affecting teeth that may leave an individual at a greater risk for cavities.
Molar incisor hypomineralization, which seems to be increasingly common. While the cause is unknown it is thought to be a combination of genetic and environmental factors. Possible contributing factors that have been investigated include systemic factors such as high levels of dioxins or polychlorinated biphenyl (PCB) in the mother’s milk, premature birth and oxygen deprivation at birth, and certain disorders during the child’s first 3 years such as such as mumps, diphtheria, scarlet fever, measles, hypoparathyroidism, malnutrition, malabsorption, hypovitaminosis D, chronic respiratory diseases, or undiagnosed and untreated coeliac disease, which usually presents with mild or absent gastrointestinal symptoms.
Amelogenesis imperfecta, which occurs in between 1 in 718 and 1 in 14,000 individuals, is a disease in which the enamel does not fully form or forms in insufficient amounts and can fall off a tooth. In both cases, teeth may be left more vulnerable to decay because the enamel is not able to protect the tooth.
In most people, disorders or diseases affecting teeth are not the primary cause of dental caries. Approximately 96% of tooth enamel is composed of minerals. These minerals, especially hydroxyapatite, will become soluble when exposed to acidic environments. Enamel begins to demineralize at a pH of 5.5. Dentin and cementum are more susceptible to caries than enamel because they have lower mineral content. Thus, when root surfaces of teeth are exposed from gingival recession or periodontal disease, caries can develop more readily. Even in a healthy oral environment, however, the tooth is susceptible to dental caries.
The evidence for linking malocclusion and/or crowding to dental caries is weak; however, the anatomy of teeth may affect the likelihood of caries formation. Where the deep developmental grooves of teeth are more numerous and exaggerated, pit and fissure caries is more likely to develop (see next section). Also, caries is more likely to develop when food is trapped between teeth.
Mulberry molars are a dental condition usually associated with congenital syphilis, characterized by multiple rounded rudimentary enamel cusps on the permanent first molars. Mulberry molars are physically defective permanent molars. The deformity is caused by congenital syphilis. This type of abnormality is characterized by dwarfed molars with cusps covered with globular enamel growths. These teeth are functional but can be cosmetically fixed with crowns, bridges, or implants.
Just above the gum line, the mulberry molar looks normal. A deformity becomes apparent towards the cusp or top grinding surface of the tooth. Here, the size of the mulberry molar is diminished in all aspects, creating a stumpy version of a conventional molar. The cause of the molar atrophy is thought to be enamel hypoplasia, or a deficiency in tooth enamel. The underlying dentin and pulp of the tooth is normal, but the enamel covering or molar sheath is thin and deformed, creating a smaller version of a typical tooth.
The grinding surface of a mulberry molar is also corrupted. Normally, the grinding surface of a molar has a pit and is surrounded by a circular ridge at the top of the tooth, which is used for grinding. The cusp deformity of the mulberry molar is characterized by an extremely shallow or completely absent pit. Instead, the pit area is filled with globular structures bunched together all along the top surface of the cusp. This type of deformity is also thought to be caused by enamel hypoplasia. Mulberry molars are typically functional and do not need treatment. If the deformity is severe or the person is bothered by the teeth, there are several options. The teeth can be covered with a permanent cast crown, stainless steel crown, or the molars can be removed and an implant or bridge can be put in place of the mulberry molar.
A mulberry molar is caused by congenital syphilis, which is passed from the mother to the child in the uterus through the placenta. Since this particular symptom of congenital syphilis manifests later in childhood with the eruption of the permanent molars, it is a late stage marker for the disease. Hutchinson’s teeth, marked by dwarfed teeth and deformed cusps that are spaced abnormally far apart, are another dental deformity caused by congenital syphilis. Mulberry molars and Hutchinson’s teeth will often occur together. Pregnant women with syphilis should tell their doctors about the condition and be treated for it during pregnancy, otherwise the baby should be screened for the disease after birth and treated with penicillin if necessary.
To establish appropriate alignment and occlusion, the sizes of upper and lower front teeth, or upper and lower teeth in general, need to be proportional. Inter-arch tooth size discrepancy (TSD) is defined as a disproportion in the mesio-distal dimensions of teeth of opposing dental arches, which can be seen in 17% to 30% of orthodontic patients.
Aetiology of CTS is multifactorial, the causative factors include:
- previous restorative procedures.
- occlusal factors
- developmental conditions/anatomical considerations.
- trauma
- others, e.g, aging dentition or presence of lingual tongue studs.
Most commonly involved teeth are mandibular molars followed by maxillary premolars, maxillary molars and maxillary premolars. in a recent audit, mandibular first molar thought to be most affected by CTS possibly due to the wedging effect of opposing pointy, protruding maxillary mesio-palatal cusp onto the mandibular molar central fissure.
Dental attrition is tooth wear caused by tooth to tooth contact. Well-defined wear facets appear on tooth cusps or ridges. This can be caused by several factors, including parafunctional habits such as bruxism or clenching, developmental defects, hard or rough-textured diet, and absence of posterior teeth support. If the natural teeth oppose or occlude with porcelain restorations, then accelerated attrition of the natural teeth may result. Similarly, when an edge to edge class III incisal relationship is present dental attrition can occur. The underlying cause of attrition may be related to the temporomandibular joint as a disruption or dysfunction of the joint can result in compromised function and complications such as bruxism and clenching of the jaw may arise
The etiology of dental attrition is multifactorial one of the most common causes of attrition is bruxism, one of the major causes being the use of MDMA (ecstasy) and various other related entactogenic drugs. Bruxism is the para-functional movement of the mandible, occurring during the day or night. It can be associated with presence of audible sound when clenching or grinding the teeth. This is usually reported by parents or partners if the grinding occurs during sleep. In some cases, dental erosion is also associated with severe dental attrition. Dental erosion is tooth surface loss caused by extrinsic or intrinsic forms of acid. Extrinsic erosion is due to a highly acidic diet, while intrinsic erosion is caused by regurgitation of gastric acids. Erosion softens the dental hard tissues making them more susceptible to attrition. Thus, if erosion and bruxism both exist, surface loss due to attrition is faster. Severe attrition in young patients is usually associated with erosive factors in their diets. The different physiological processes of tooth wear (abrasion, attrition and erosion) usually occur simultaneously and rarely work individually. Therefore, it is important to understand these tooth wear processes and their interactions to determine causes of tooth surface loss. Demineralization of the tooth surface due to acids can cause occlusal erosion as well as attrition. Wedge-shaped cervical lesions are commonly found in association with occlusal erosion and attrition.
Tooth wear is typically seen in the elderly and can be referred to as a natural aging process. Attrition, abrasion, erosion or a combination of these factors are the main reasons for tooth wear in elderly people who retain their natural teeth. This tooth wear can be pathological or physiological. The number of teeth with incisal or occlusal wear increases with age. Attrition occurs in 1 in 3 adolescents.
In addition to other occlusal factors, independent variables such as male gender, bruxism, and loss of molar occlusal contact, edge-to-edge relation of incisors, unilateral buccolingual cusp-to-cusp relation, and unemployment have been identified in affecting occlusal wear. Similarly, anterior cross-bite, unilateral posterior cross-bite, and anterior crowding have been found to be protective factors for high occlusal wear levels.
An impacted tooth is one that fails to erupt into the dental arch within the expected developmental window.
Because impacted teeth do not erupt, they are retained throughout the individual's lifetime unless extracted or exposed surgically. Teeth may become impacted because of adjacent teeth, dense overlying bone, excessive soft tissue or a genetic abnormality. Most often, the cause of impaction is inadequate arch length and space in which to erupt. That is the total length of the alveolar arch is smaller than the tooth arch (the combined mesiodistal width of each tooth). The wisdom teeth (third molars) are frequently impacted because they are the last teeth to erupt in the oral cavity. Mandibular third molars are more commonly impacted than their maxillary counterparts. As a general rule, all impacted teeth must be removed, except canine teeth; canines do not need surgery and may just remain buried and give no further problems.
Erupted teeth that are adjacent to impacted teeth are predisposed to periodontal disease. Since the most difficult tooth surface to be cleaned is the distal surface of the last tooth, in the presence of an impacted tooth there is always gingival inflammation around the second molar that is invariably present. Even this minor amount of inflammation can provide bacteria access to a larger portion of the root surface that results in early formation of periodontitis compromising the tooth.
Even in situations in which no obvious communication exists between the mouth and the impacted third molar there may be enough communication to initiate dental caries (tooth decay).
There have been many syndromes which have been identified to be related to failure of eruption of teeth. These syndromes are Cleidocranial dyspalsia, Osteoporosis, Rutherford syndrome, GAPO syndrome and Osteoglophonic dysplasia.
This type of failure of eruption takes place when the affected tooth is ankylosed to the bone around it. This is different than primary failure of eruption where the affected tooth/teeth were not ankylosed. In mechanical failure of eruption, affected tooth has partial or complete loss of PDL in a panoramic radiograph and teeth distal to affected tooth do not have this condition. On a percussion test, a tooth with mechanical failure of eruption will have a dull metallic sound.
Behavior therapy is important especially when the kids are in their primary dentition in the pre-adolescent age. Improving habits at this time may lead to self-correction of open bite in many cases. Sometimes presence of infantile swallowing into early childhood may lead to an anterior open bite in patients. Habit control through appliances such as Tongue crib or Tongue spurs may be used in adolescent ages if the behavior modification fails to stop the habit.
Taurodontism is a condition found in the molar teeth of humans whereby the body of the tooth and pulp chamber is enlarged vertically at the expense of the roots. As a result, the floor of the pulp and the furcation of the tooth is moved apically down the root. The underlying mechanism
of taurodontism is the failure or late invagination of Hertwig's epithelial root sheath, which is responsible for root formation and shaping causing an apical shift of the root furcation.
The constriction at the amelocemental junction is usually reduced or absent. Taurodontism is most commonly found in permanent dentition although the term is traditionally applied to molar teeth.
In some cases taurodontism seems to follow an autosomal dominant type of inheritance.
Taurodontism is found in association with amelogenesis imperfecta, ectodermal dysplasia and tricho-dento-osseous syndrome.
The term means "bull like" teeth derived from similarity of these teeth to those of ungulate or cud-chewing animals.
According to Shaw these can be classified as hypotaurodont, hypertaurodont and mesotaurodont.
According to Mangion taurodontism may be:
- A (mentally retarded) character
- A primitive pattern
- Mendelian recessive character
- Atavistic feature
- A mutation
It has also been reported in Klinefelter's syndrome, XXYY and Down's syndrome .
The teeth involved are invariably molars, sometimes single and at the other times multiple teeth may be involved. The teeth themselves may look normal and do not have any particular anatomical character on clinical examination.
On a dental radiograph, the involved tooth looks rectangular in shape without apical taper. The pulp chamber is extremely large and the furcations may be only a few millimeters long at times.
Man-Suk Baek and others evaluated long-term stability of anterior open bite by intrusion of maxillary posterior teeth. Their results showed that the molars were intruded by 2.39mm during treatment and relapsed back by 0.45mm or 22.8%. The incisal overbite increased by 5.56mm during treatment and relapsed back by 1.20mm or 17%. They concluded that majority of the relapse occurred during first year of treatment.
Daily oral hygiene measures to prevent periodontal disease include:
- Brushing properly on a regular basis (at least twice daily), with the patient attempting to direct the toothbrush bristles underneath the gumline, helps disrupt the bacterial-mycotic growth and formation of subgingival plaque.
- Flossing daily and using interdental brushes (if the space between teeth is large enough), as well as cleaning behind the last tooth, the third molar, in each quarter
- Using an antiseptic mouthwash: Chlorhexidine gluconate-based mouthwash in combination with careful oral hygiene may cure gingivitis, although they cannot reverse any attachment loss due to periodontitis.
- Using periodontal trays to maintain dentist-prescribed medications at the source of the disease: The use of trays allows the medication to stay in place long enough to penetrate the biofilms where the microorganism are found.
- Regular dental check-ups and professional teeth cleaning as required: Dental check-ups serve to monitor the person's oral hygiene methods and levels of attachment around teeth, identify any early signs of periodontitis, and monitor response to treatment.
- Microscopic evaluation of biofilm may serve as a guide to regaining commensal health flora.
Typically, dental hygienists (or dentists) use special instruments to clean (debride) teeth below the gumline and disrupt any plaque growing below the gumline. This is a standard treatment to prevent any further progress of established periodontitis. Studies show that after such a professional cleaning (periodontal debridement), microbial plaque tends to grow back to precleaning levels after about three to four months. Nonetheless, the continued stabilization of a patient's periodontal state depends largely, if not primarily, on the patient's oral hygiene at home, as well as on the go. Without daily oral hygiene, periodontal disease will not be overcome, especially if the patient has a history of extensive periodontal disease.
Periodontal disease and tooth loss are associated with an increased risk, in male patients, of cancer.
Contributing causes may be high alcohol consumption or a diet low in antioxidants.
Periodontitis has been linked to increased inflammation in the body, such as indicated by raised levels of C-reactive protein and interleukin-6. It is linked through this to increased risk of stroke, myocardial infarction, and atherosclerosis. It also linked in those over 60 years of age to impairments in delayed memory and calculation abilities. Individuals with impaired fasting glucose and diabetes mellitus have higher degrees of periodontal inflammation, and often have difficulties with balancing their blood glucose level owing to the constant systemic inflammatory state, caused by the periodontal inflammation. Although no causal association was proven, a recent study showed correlation between chronic periodontitis and erectile dysfunction.
An enamel pearl is a condition of teeth where enamel is found in locations where enamel is not supposed to be, such as on a root surface. They are usually found in the area between roots, which is called a furcation, of molars. Enamel pearls are not common in teeth with a single root. The most common location of enamel pearls is the furcation areas of the maxillary and mandibular third molar roots.
Enamel pearls are formed from the Hertwig's Epithelial root sheath. After the initiation of the formation of dentin in the root area of the tooth, the root sheath disintegrates and moves away from the root surface so that the cells of the dental sac can come in contact with predentin to differentiate into cementoblasts and start deposition of cementum. However, if the cells of epithelial root sheath remain adherent to predentin, they may differentiate into fully functional ameloblasts and deposit enamel. Such droplets of enamel are called enamel pearls.