Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Although not necessary for the diagnosis, individuals with intellectual disability are at higher risk for SMD. It is more common in boys, and can occur at any age.
Motor disorders are disorders of the nervous system that cause abnormal and involuntary movements. They can result from damage to the motor system.
Motor disorders are defined in the fifth edition of the "Diagnostic and Statistical Manual of Mental Disorders" (DSM-5) – published in 2013 to replace the fourth text revision (DSM-IV-TR) – as a new sub-category of neurodevelopmental disorders. The DSM-5 motor disorders include developmental coordination disorder, stereotypic movement disorder, and the tic disorders including Tourette syndrome.
There is physiological intracranial calcification in about 0,3-1,5% of individuals. Fahr's disease is a rare, genetically dominant, inherited neurological disorder characterized by abnormal deposits of calcium, primarily in the basal ganglia.
Pseudobulbar palsy is the result of damage of motor fibers traveling from the cerebral cortex to the lower brain stem. This damage might arise in the course of a variety of neurological conditions that involve demyelination and bilateral corticobulbar lesions. Examples include:
- Vascular causes: bilateral hemisphere infarction, CADASIL syndrome
- Progressive supranuclear palsy
- Amyotrophic lateral sclerosis
- Parkinson's disease and related multiple system atrophy
- Various motor neuron diseases, especially those involving demyelination
- Multiple sclerosis and other inflammatory disorders
- High brain stem tumors
- Metabolic causes: osmotic demyelination syndrome
- Neurological involvement in Behçet's disease
- Brain trauma
Movement disorders are clinical syndromes with either an excess of movement or a paucity of voluntary and involuntary movements, unrelated to weakness or spasticity. Movement disorders are synonymous with basal ganglia or extrapyramidal diseases. Movement disorders are conventionally divided into two major categories- "hyperkinetic" and "hypokinetic".
Hyperkinetic movement disorders refer to dyskinesia, or excessive, often repetitive, involuntary movements that intrude upon the normal flow of motor activity.
Hypokinetic movement disorders refer to akinesia (lack of movement), hypokinesia (reduced amplitude of movements), bradykinesia (slow movement) and rigidity. In primary movement disorders, the abnormal movement is the primary manifestation of the disorder. In secondary movement disorders, the abnormal movement is a manifestation of another systemic or neurological disorder.
Prognosis depends on the severity of the disorder. Recognizing symptoms early can help reduce the risk of self-injury, which can be lessened with meditations. Stereotypic movement disorder due to head trauma may be permanent.
The proposed mechanism of pseudobulbar palsy points to the disinhibition of the motor neurons controlling laughter and crying, proposing that a reciprocal pathway exists between the cerebellum and the brain stem that adjusts laughter and crying responses, making them appropriate to context. The pseudobulbar crying could also be induced by stimulation in the region of the subthalamic nucleus of the brain.
Hypokinesia refers to decreased bodily movement. One of the two categories of movement disorders, hypokinesia is characterized by a partial or complete loss of muscle movement due to a disruption in the basal ganglia. Patients with hypokinetic disorders like Parkinson's disease experience muscle rigidity and an inability to produce movement. It is also associated with mental health disorders and prolonged inactivity due to illness, amongst other diseases.
The other category of movement disorder resulting from damage to the basal ganglia, hyperkinesia, features an exaggeration of unwanted motion, like twitching or writhing in Huntington's disease or Tourette syndrome.
PANDAS is a hypothesis that there exists a subset of children with rapid onset of obsessive-compulsive disorder (OCD) or tic disorders and these symptoms are caused by group A beta-hemolytic streptococcal (GABHS) infections. The proposed link between infection and these disorders is that an initial autoimmune reaction to a GABHS infection produces antibodies that interfere with basal ganglia function, causing symptom exacerbations. It has been proposed that this autoimmune response can result in a broad range of neuropsychiatric symptoms.
Parkinson's Disease is one of the most commonly known motor disorders. It is a disorder that slowly and progressively affects and alters movement, control and coordination of muscles, and balance. This disease is caused by cells being destroyed in the part of the brainstem called the substantia nigra. This is the part of the brain that controls coordination and movement ("Movement Disorders"). Symptoms of Parkinson’s disease include tremors, gait problems and spasms. One in five hundred people will have Parkinson’s disease. Being exposed to certain drugs or toxins that cause genetic mutation is the usual cause of Parkinson’s disease (Mandal). The treatments of Parkinson’s disease include medication and in some cases surgery. Medications commonly used as treatment are anticholinergics and dopamine enhancing drugs. Surgery is usually only considered when medication has been unsuccessful (“Movement Disorders”).
Treatment depends upon the underlying disorder. Movement disorders have been known to be associated with a variety of autoimmune diseases.
There are many potential causes of dysarthria. They include toxic, metabolic, degenerative diseases, traumatic brain injury, or thrombotic or embolic stroke.
Degenerative diseases include parkinsonism, amyotrophic lateral sclerosis (ALS), multiple sclerosis, Huntington's disease, Niemann-Pick disease, and Friedreich ataxia.
Toxic and metabolic conditions include: Wilson's disease, hypoxic encephalopathy such as in drowning, and central pontine myelinolysis.
These result in lesions to key areas of the brain involved in planning, executing, or regulating motor operations in skeletal muscles (i.e. muscles of the limbs), including muscles of the head and neck (dysfunction of which characterises dysarthria). These can result in dysfunction, or failure of: the motor or somatosensory cortex of the brain, corticobulbar pathways, the cerebellum, basal nuclei (consisting of the putamen, globus pallidus, caudate nucleus, substantia nigra etc.), brainstem (from which the cranial nerves originate), or the neuro-muscular junction (in diseases such as myasthenia gravis) which block the nervous system's ability to activate motor units and effect correct range and strength of movements.
Causes:
- Brain tumor
- Cerebral palsy
- Guillain–Barré syndrome
- Hypothermia
- Lyme disease
- Stroke
- Intracranial hypertension (formerly known as pseudotumor cerebri)
- Tay-Sachs, and late onset Tay-Sachs (LOTS), disease
The specific molecular mechanism that underpins this movement disorder is not well known. However, most researchers suggest that it follows an autosomal dominant genetic inheritance pattern in which mutations in certain genes give rise to structural abnormalities in nervous system networks responsible for voluntary skeletal muscle movement, which, in turn, result in the functional movement abnormalities seen in patients. Despite being autosomal dominant, it is important to note that the disease has variable expressivity. That is, patients who have inherited a mutated dominant allele, along with their genetically affected parent, can be symptomatic or asymptomatic for CMM disorder. The genes that currently have evidence to be associated with CMM disorder include "DCC" (deleted in colorectal carcinoma), "DNAL4" (dynein axonemal light chain 4), and "RAD51 (recombination protein A)".
"DCC" encodes a receptor for "NTN1" (netrin-1), a protein thought to be responsible for axon guidance and neuronal cell migration during development. A mutation of this gene (including nonsense, splice site mutation, insertions, frameshift) has been identified as a possible cause for CMM disorder. Experiments in mice also support the claim that CMM disorder is associated with genetic mutations in "DCC". "Kanga" mice, lacking the P3 intracellular domain of the "DCC" receptor, show a hopping gait, moving their hind legs in a strictly paired fashion, as do kangaroos.
"DNAL4" encodes a component of dynein motor complex in commissural neurons of the corpus callosum. In contrast to "DCC", "DNAL4" is thought to have a recessive inheritance pattern for the CMM disorder. In CMM disorder patients, researchers found splice site mutations on "DNAL4", which caused skipping of exon 3, and thereby omission of 28 amino acids from "DNAL4" protein. This mutant "DNAL4" protein, in turn, could lead to faulty cross-hemisphere wiring, resulting in CMM.
"RAD51" maintains genome integrity by repairing DNA double-strand breaks through homologous recombination. "RAD51" heterozygous mutations, specifically premature termination codons, have been found in many CMM disorder patients through genome-wide linkage analysis and exome sequencing. In a mouse model, researchers also found "RAD51" products in corticospinal tract axons at the pyramidal decussation. They therefore suggest that "RAD51" might be a gene that, when haploinsufficient, causes CMM disorder in humans.
Despite identification of three prospective genes, no genotype-phenotype correlations have yet been found. That is, the severity of clinical signs and symptoms does not correlate with the type of genetic variant. Mutations in the above genes account for a total of about 35 percent of cases. Mutations in other genes that have not been identified likely account for the other cases of this disorder.
Dysmetria is often found in individuals with multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and persons who have suffered from tumors or strokes. Persons who have been diagnosed with autosomal dominant spinocerebellar ataxia (SCAs) also exhibit dysmetria. There are many types of SCAs and though many exhibit similar symptoms (one being dysmetria), they are considered to be heterogeneous. Friedreich’s ataxia is a well-known SCA in which children have dysmetria. Cerebellar malformations extending to the brainstem can also present with dysmetria.
Congenital mirror movement disorder (CMM disorder) is a rare genetic neurological disorder which is characterized by mirrored movement, sometimes referred to as associated or synkinetic movement, most often in the upper extremity of the body. These movements are voluntary intentional movements on one, ipsilateral, side of the body that are mirrored simultaneously by involuntary movements on the contralateral side.
The reproduction of involuntary movement usually happens along the head-tail axis, having a left-right symmetry. For example, if someone were to voluntarily make a fist with their left hand, their right hand would do the same. In most cases, the accompanying contralateral involuntary movements are much weaker than the ipsilateral voluntary ones, although the extent and magnitude of the mirrored movement vary across patients. This disorder has not yet been found to be associated with any other neurologic disease or cognitive disability, and currently, no cures nor means to improve signs or symptoms have been found.
The congenital mirror movements begin in infancy and persist throughout the patient’s life, often with very little improvement, or deterioration. Consequently, patients who do suffer from this movement disorder have serious difficulty carrying out tasks that require manual dexterity or precision, such as playing a two handed musical instrument or typing on a keyboard, for their whole lives. Patients also often experience discomfort or pain in the upper limbs due to prolonged use of the same muscles. Therefore, quality of life can be severely hampered.
CMM disorder’s prevalence in the world is thought to be less than 1 in 1 million people. Because of its rarity, researchers suggest that some mildly affected individuals may never be diagnosed. It is important not to confuse congenital mirror movement disorders, a rare genetically based neurologic disease, with acquired mirror movement disorders that present themselves during one’s lifetime due to other reasons (stroke for example).
Though it is often most associated with Parkinson's disease, hypokinesia can be present in a wide variety of other conditions.
Researchers do not fully understand what causes PLS, although it is thought it could be due to a combination of environmental and genetic factors. Studies are being done to evaluate the possible causes, although linking causality can be difficult due to the relatively low number of people who are diagnosed with PLS.
Juvenile PLS may be caused by the ALS2 gene, although this condition is very rare.
Blocq's disease was first considered by Paul Blocq (1860–1896), who described this phenomenon as the loss of memory of specialized movements causing the inability to maintain an upright posture, despite normal function of the legs in the bed. The patient is able to stand up, but as soon as the feet are on the ground, the patient cannot hold himself upright nor walk; however when lying down, the subject conserved the integrity of muscular force and the precision of movements of the lower limbs. The motivation of this study came when a fellow student Georges Marinesco (1864) and Paul published a case of parkinsonian tremor (1893) due to a tumor located in the substantia nigra.
In the third paper published by Paul Blocq, he was trying to determine the neurophysiology behind this disease by relating the cerebral cortex (the decision making) and the spinal cord (the decision executer). His hypothesis was that there would exist an inhibitory influence which exerted and influenced the cortical or spinal centers for standing and walking.
Developmental coordination disorder is a lifelong neurological condition that is more common in males than in females, with a ratio of approximately four males to every female. The exact proportion of people with the disorder is unknown since the disorder can be difficult to detect due to a lack of specific laboratory tests, thus making diagnosis of the condition one of elimination of all other possible causes/diseases. Approximately 5–6% of children are affected by this condition.
The prognosis for those with spastic muscles depends on multiple factors, including the severity of the spasticity and the associated movement disorder, access to specialised and intensive management, and ability of the affected individual to maintain the management plan (particularly an exercise program). Most people with a significant UMN lesion will have ongoing impairment, but most of these will be able to make progress. The most important factor to indicate ability to progress is seeing improvement, but improvement in many spastic movement disorders may not be seen until the affected individual receives help from a specialised team or health professional.
While moderate to severe traumatic brain injury is a risk for ALS, it is unclear if mild traumatic brain injury increases rates.
In 1994 the National Institute for Occupational Safety and Health (NIOSH) reported a nonsignificant increase in nervous system disorders due to four cases of ALS among National Football League (NFL) players. It was unclear if this was due to chance or not. Another study from 2012 also found a possible increase in ALS in NFL football players. An older study did not find an increased risk among high school football players. A 2007 review found an increased risk among soccer players. ALS may also occur more often among the US military veterans however the reason is unknown. This may be due to head injury.
After the 2012 report was released, some NFL players involved in the legal settlement with the NFL complained that the NFL, which initially agreed to pay $765 million, was not doing enough to help players. The judge in the case concurred, and the NFL then agreed to pay an unlimited amount of damages for players found to have ALS, Parkinson's disease, Alzheimer's disease and dementia.
Hemiplegia is not a progressive disorder, except in progressive conditions like a growing brain tumour. Once the injury has occurred, the symptoms should not worsen. However, because of lack of mobility, other complications can occur. Complications may include muscle and joint stiffness, loss of aerobic fitness, muscle spasms, bed sores, pressure ulcers and blood clots.
Sudden recovery from hemiplegia is very rare. Many of the individuals will have limited recovery, but the majority will improve from intensive, specialised rehabilitation. Potential to progress may differ in cerebral palsy, compared to adult acquired brain injury. It is vital to integrate the hemiplegic child into society and encourage them in their daily living activities. With time, some individuals may make remarkable progress.
Flaccid dysarthria is caused when damage occurs to the motor unit (one or more cranial or spinal nerves). Processes that can cause this include:
- Congenital disorders
- Demyelinating disorders
- Infectious/Inflammatory
- Degenerative disorders
- Metabolic
- Neoplastic
- Traumatic
- Vascular Diseases
- Flaccid Paralysis
Developmental verbal dyspraxia is a developmental inability to motor plan volitional movement for the production of speech in the absence of muscular weakness. Research has suggested links to the FOXP2 gene.
Recent research indicates that the biomolecule taurine may be effective for hypertonia, perhaps through its benzodiazepine-like modulation of the inhibitory neurotransmitter GABA or the neuromuscular effects of increasing intracellular calcium levels.