Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Kleefstra syndrome affects males and females equally and approximately, 75% of all documented cases are caused by Eu-HMTase1 disruptions while only 25% are caused by 9q34.3 deletions. There are no statistics on the effect the disease has on life expectancy due to the lack of information available.
Roberts syndrome is an extremely rare condition that only affects about 150 reported individuals. Although there have been only about 150 reported cases, the affected group is quite diverse and spread worldwide. Parental consanguinity (parents are closely related) is common with this genetic disorder. The frequency of Roberts syndrome carriers is unknown.
Due to its recent discovery, there are currently no existing treatments for Kleefstra syndrome.
Since tetrasomy 9p is not usually inherited, the risk of a couple having a second child with the disorder is minimal. While patients often do not survive to reproductive age, those who do may or may not be fertile. The risk of a patient's child inheriting the disorder is largely dependent on the details of the individual's case.
The true prevalence of PMS has not been determined. More than 1200 people have been identified worldwide according the Phelan-McDermid Syndrome Foundation. However, it is believed to be underdiagnosed due to inadequate genetic testing and lack of specific clinical features. It is known to occur with equal frequency in males and females. Studies using chromosomal microarray for diagnosis indicate that at least 0.5% of cases of ASD can be explained by mutations or deletions in the "SHANK3" gene. In addition when ASD is associated with ID, "SHANK3" mutations or deletions have been found in up to 2% of individuals.
About half of all 'marker' chromosomes are idic(15) but idic(15) in itself is one of the rare chromosome abnormalities. Incidence at birth appears to be 1 in 30,000 with a sex ratio of almost 1:1; however, since dysmorphic features are absent or subtle and major malformations are rare, chromosome analysis may not be thought to be indicated, and some individuals, particularly in the older age groups, probably remain undiagnosed. There are organizations for families with idic(15) children that offer extensive information and support.
As its name indicates, a person with the syndrome has one Y chromosome and four X chromosomes on the 23rd pair, thus having 49 chromosomes rather than the normal 46. As with most categories of aneuploidy disorders, 49,XXXXY syndrome is often accompanied by intellectual disability. It can be considered a form of 47, XXY Klinefelter syndrome, or a variant of it.
It is genetic but not hereditary. This means that while the genes of the parents cause the syndrome, there is a small chance of more than one child having the syndrome. The probability of inheriting the disease is about 1%.
The individuals with this syndrome are males, but 49, XXXXX also exists with similar characteristics.
Many sources classify Proteus syndrome to be a type of nevus syndrome. The lesions appear to be distributed in a mosaic manner. It has been confirmed that the disorder is an example of genetic mosaicism.
In 2011 researchers determined the cause of Proteus syndrome. In 26 of 29 patients who met strict clinical criteria for the disorder, Lindhurst "et al." identified an activating mutation in AKT1 kinase in a mosaic state gene.
Previous research had suggested the condition linked to PTEN on chromosome 10, while other research pointed to chromosome 16. Prior to the findings regarding AKT1 in 2011, other researchers expressed doubt regarding the involvement of PTEN or GPC3, which codes for glypican 3 and may play a role in regulating cell division and growth regulation.
At this time, there are no other phenotypes (observable expressions of a gene) that have been discovered for mutations in the ESCO2 gene.
Craniofrontonasal dysplasia is a very rare genetic condition. As such there is little information and no consensus in the published literature regarding the epidemiological statistics.
The incidence values that were reported ranged from 1:100,000 to 1:120,000.
Though the outcome for individuals with either form of the tetrasomy is highly variable, mosaic individuals consistently experience a more favourable outcome than those with the non-mosaic form. Some affected infants die shortly after birth, particularly those with the non-mosaic tetrasomy. Many patients do not survive to reproductive age, while others are able to function relatively normally in a school or workplace setting. Early diagnosis and intervention has been shown to have a strong positive influence on the prognosis.
Prognosis varies widely depending on severity of symptoms, degree of intellectual impairment, and associated complications. Because the syndrome is rare and so newly identified, there are no long term studies.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.
Pallister-Killian does not appear to be hereditary. Some research has suggested that the presence of the extra chromosome may be linked to premeiotic mitotic errors, both maternally and paternally. Several theories regarding the mechanism of this formation have been introduced.
The estimated prevalence of Jacobsen syndrome is believed to be approximately 1 out of every 100,000 births. For reasons unknown females are twice as likely to have Jacobsen Syndrome than males. No preference for any race or ethnicity has been reported so far.
A prognosis for Alström syndrome is complicated because it widely varies. Any person that has the syndrome have different set of disorders. Permanent blindness, deafness, and Type 2 diabetes may occur. Liver and kidney failure can progressively get worse. The life expectancy is usually reduced and the patients rarely live past 50 years old.
Recent findings in genetic research have suggested that a large number of genetic disorders, both genetic syndromes and genetic diseases, that were not previously identified in the medical literature as related, may be, in fact, highly related in the genetypical root cause of the widely varying, phenotypically-observed disorders. Thus, Alstrom syndrome is a ciliopathy. Other known ciliopathies include primary ciliary dyskinesia, Bardet-Biedl syndrome, polycystic kidney and liver disease, nephronophthisis, Meckel-Gruber syndrome and some forms of retinal degeneration.
Trisomy 8 mosaicism affects wide areas of chromosome 8 containing many genes, and can thus be associated with a range of symptoms.
- Mosaic trisomy 8 has been reported in rare cases of Rothmund-Thomson syndrome, a genetic disorder associated with the DNA helicase RECQL4 on chromosome 8q24.3. The syndrome is "characterized by skin atrophy, telangiectasia, hyper- and hypopigmentation, congenital skeletal abnormalities, short stature, premature aging, and increased risk of malignant disease".
- Some individuals trisomic for chromosome 8 were deficient in production of coagulation factor VII due to a factor 7 regulation gene (F7R) mapped to 8p23.3-p23.1.
- Trisomy and other rearrangements of chromosome 8 have also been found in tricho–rhino–phalangeal syndrome.
- Small regions of chromosome 8 trisomy and monosomy are also created by recombinant chromosome 8 syndrome (San Luis Valley syndrome), causing anomalies associated with tetralogy of Fallot, which results from recombination between a typical chromosome 8 and one carrying a parental paracentric inversion.
- Trisomy is also found in some cases of chronic myeloid leukaemia, potentially as a result of karyotypic instability caused by the fusion gene.
Muir–Torre was observed to occur in 14 of 50 families (28%) and in 14 of 152 individuals (9.2%) with Lynch syndrome, also known as HNPCC.
The 2 major MMR proteins involved are hMLH1 and hMSH2. Approximately 70% of tumors associated with the MTS have microsatellite instability. While germline disruption of hMLH1 and hMSH2 is evenly distributed in HNPCC, disruption of hMSH2 is seen in greater than 90% of MTS patients.
Gastrointestinal and genitourinary cancers are the most common internal malignancies. Colorectal cancer is the most common visceral neoplasm in Muir–Torre syndrome patients.
22q13 deletion syndrome (spoken as "twenty-two q one three", see Locus (genetics)) is a genetic disorder caused by deletions or rearrangements on the q terminal end (long arm) of chromosome 22. Any abnormal genetic variation in the q13 region that presents with significant manifestations (phenotype) typical of a terminal deletion may be diagnosed as 22q13 deletion syndrome. 22q13 deletion syndrome is often called Phelan-McDermid syndrome (abbreviated PMS). There is disagreement among researchers as to the exact definition of 22q13 deletion syndrome. The Developmental Synaptopathies Consortium defines PMS as being caused by "SHANK3" mutations, a definition that appears to exclude terminal deletions. The requirement to include "SHANK3" in the definition is supported by many, but not by those who first described 22q13 deletion syndrome.
A prototypical terminal deletion of 22q13 can be uncovered by karyotype analysis, but many terminal and interstitial deletions are too small. The availability of DNA microarray technology for revealing multiple genetic problems simultaneously has been the diagnostic tool of choice. The falling cost for whole exome sequencing and, eventually, whole genome sequencing, may replace DNA microarray technology for candidate evaluation. However, fluorescence in situ hybridization (FISH) tests remain valuable for diagnosing cases of mosaicism (mosaic genetics) and chromosomal rearrangements (e.g., ring chromosome, unbalanced chromosomal translocation). Although early researchers sought a monogenic (single gene genetic disorder) explanation, recent studies have not supported that hypothesis (see Etiology, below).
Two international research studies are currently underway. The International Genetic Study done with the Spinner Laboratory at The Children's Hospital of Philadelphia studies the ring 20 chromosome at the molecular level. The Clinical Research Study collects clinical information from parents to create a database of about the full spectrum of patients with ring chromosome 20 syndrome.
Edwards syndrome occurs in about one in 5,000 live births, but more conceptions are affected by the syndrome because the majority of those diagnosed with the condition prenatally will not survive to birth. Although women in their 20s and early 30s may conceive babies with Edwards syndrome, the risk of conceiving a child with it increases with a woman's age. The average maternal age for conceiving a child with this disorder is 32½.
49,XXXXY syndrome is an extremely rare aneuploidic sex chromosomal abnormality. It occurs in approximately 1 out of 85,000 to 100,000 males.
At the present time, there is no specific treatment that can undo any chromosomal abnormality, nor the genetic pattern seen in people with idic(15). The extra chromosomal material in those affected was present at or shortly after conception, and its effects on brain development began taking place long before the child was born. Therapies are available to help address many of the symptoms associated with idic(15). Physical, occupational, and speech therapies along with special education techniques can stimulate children with idic(15) to develop to their full potential.
In terms of medical management of the symptoms associated with Chromosome 15q11.2-q13.1 Duplication Syndrome, families should be aware that individuals with chromosome 15 duplications may tolerate medications differently and may be more sensitive to side effects for some classes of medications, such as the serotonin reuptake inhibitor type medications (SSRI).
Thus, these should be used with caution and any new medication should be instituted in a controlled setting, with slow titration of levels and with a clear endpoint as to what the expected outcome for treatment is.
There is an increased risk of sudden, unexpected death among children and adults with this syndrome. The full cause is not yet understood but it is generally attributed to SUDEP (Sudden Unexplained Death in Epilepsy).