Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Trisomy 8 mosaicism affects wide areas of chromosome 8 containing many genes, and can thus be associated with a range of symptoms.
- Mosaic trisomy 8 has been reported in rare cases of Rothmund-Thomson syndrome, a genetic disorder associated with the DNA helicase RECQL4 on chromosome 8q24.3. The syndrome is "characterized by skin atrophy, telangiectasia, hyper- and hypopigmentation, congenital skeletal abnormalities, short stature, premature aging, and increased risk of malignant disease".
- Some individuals trisomic for chromosome 8 were deficient in production of coagulation factor VII due to a factor 7 regulation gene (F7R) mapped to 8p23.3-p23.1.
- Trisomy and other rearrangements of chromosome 8 have also been found in tricho–rhino–phalangeal syndrome.
- Small regions of chromosome 8 trisomy and monosomy are also created by recombinant chromosome 8 syndrome (San Luis Valley syndrome), causing anomalies associated with tetralogy of Fallot, which results from recombination between a typical chromosome 8 and one carrying a parental paracentric inversion.
- Trisomy is also found in some cases of chronic myeloid leukaemia, potentially as a result of karyotypic instability caused by the fusion gene.
Exposure of spermatozoa to lifestyle, environmental and/or occupational hazards may increase the risk of aneuploidy. Cigarette smoke is a known aneugen (aneuploidy inducing agent). It is associated with increases in aneuploidy ranging from 1.5 to 3.0-fold. Other studies indicate factors such as alcohol consumption, occupational exposure to benzene, and exposure to the insecticides fenvalerate and carbaryl also increase aneuploidy.
Edwards syndrome occurs in about one in 5,000 live births, but more conceptions are affected by the syndrome because the majority of those diagnosed with the condition prenatally will not survive to birth. Although women in their 20s and early 30s may conceive babies with Edwards syndrome, the risk of conceiving a child with it increases with a woman's age. The average maternal age for conceiving a child with this disorder is 32½.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.
Since tetrasomy 9p is not usually inherited, the risk of a couple having a second child with the disorder is minimal. While patients often do not survive to reproductive age, those who do may or may not be fertile. The risk of a patient's child inheriting the disorder is largely dependent on the details of the individual's case.
Human trisomies compatible with live birth, other than Down syndrome (trisomy 21), are Edwards syndrome (trisomy 18) and Patau syndrome (trisomy 13). Complete trisomies of other chromosomes are usually not viable and represent a relatively frequent cause of miscarriage. Only in rare cases of a mosaicism, the presence of a normal cell line, in addition to the trisomic cell line, may support the development of a viable trisomy of the other chromosomes.
Patau syndrome is the result of trisomy 13, meaning each cell in the body has three copies of chromosome 13 instead of the usual two. A small percentage of cases occur when only some of the body's cells have an extra copy; such cases are called mosaic Patau.
Patau syndrome can also occur when part of chromosome 13 becomes attached to another chromosome (translocated) before or at conception in a Robertsonian translocation. Affected people have two copies of chromosome 13, plus extra material from chromosome 13 attached to another chromosome. With a translocation, the person has a partial trisomy for chromosome 13 and often the physical signs of the syndrome differ from the typical Patau syndrome.
Most cases of Patau syndrome are not inherited, but occur as random events during the formation of reproductive cells (eggs and sperm). An error in cell division called non-disjunction can result in reproductive cells with an abnormal number of chromosomes. For example, an egg or sperm cell may gain an extra copy of the chromosome. If one of these atypical reproductive cells contributes to the genetic makeup of a child, the child will have an extra chromosome 13 in each of the body's cells. Mosaic Patau syndrome is also not inherited. It occurs as a random error during cell division early in fetal development.
Patau syndrome due to a translocation can be inherited. An unaffected person can carry a rearrangement of genetic material between chromosome 13 and another chromosome. This rearrangement is called a balanced translocation because there is no extra material from chromosome 13. Although they do not have signs of Patau syndrome, people who carry this type of balanced translocation are at an increased risk of having children with the condition.
Though the outcome for individuals with either form of the tetrasomy is highly variable, mosaic individuals consistently experience a more favourable outcome than those with the non-mosaic form. Some affected infants die shortly after birth, particularly those with the non-mosaic tetrasomy. Many patients do not survive to reproductive age, while others are able to function relatively normally in a school or workplace setting. Early diagnosis and intervention has been shown to have a strong positive influence on the prognosis.
With the Echidna, this kind of chromosomal arrangement is normal. In this species genetic sex differentiation works like this:
- 63 (XYXYXYXYX, male) and
- 64 (XXXXXXXXXX, female)
Trisomy 8, also known as Warkany syndrome 2, is a human chromosomal disorder caused by having three copies (trisomy) of chromosome 8. It can appear with or without mosaicism.
In 2008/2009, 495 diagnoses of Edwards syndrome (trisomy 18) were made in England and Wales, 92% of which were made prenatally, resulting in 339 abortions, 49 stillbirths/miscarriages/fetal deaths, 72 unknown outcomes, and 35 live births. Because about 3% of cases with unknown outcomes are likely to result in a live birth, the total number of live births is estimated to be 37 (2008/09 data are provisional). Major causes of death include apnea and heart abnormalities. It is impossible to predict an exact prognosis during pregnancy or the neonatal period. Half of the infants with this condition do not survive beyond the first week of life. The median lifespan is five to 15 days. About 8-12% of infants survive longer than 1 year. One percent of children live to age 10, though a retrospective Canadian study of 254 children with trisomy 18 demonstrated ten year survival of 9.8%.
Mosaic trisomy 16, a rare chromosomal disorder, is compatible with life, therefore a baby can be born alive. This happens when only some of the cells in the body contain the extra copy of chromosome 16. Some of the consequences include slow growth before birth.
Pallister-Killian does not appear to be hereditary. Some research has suggested that the presence of the extra chromosome may be linked to premeiotic mitotic errors, both maternally and paternally. Several theories regarding the mechanism of this formation have been introduced.
In 2011 researchers determined the cause of Proteus syndrome. In 26 of 29 patients who met strict clinical criteria for the disorder, Lindhurst "et al." identified an activating mutation in AKT1 kinase in a mosaic state gene.
Previous research had suggested the condition linked to PTEN on chromosome 10, while other research pointed to chromosome 16. Prior to the findings regarding AKT1 in 2011, other researchers expressed doubt regarding the involvement of PTEN or GPC3, which codes for glypican 3 and may play a role in regulating cell division and growth regulation.
Pallister–Killian syndrome (also tetrasomy 12p mosaicism or Pallister mosaic aneuploidy syndrome) is an extremely rare genetic disorder occurring in humans. Pallister-Killian occurs due to the presence of the anomalous extra isochromosome 12p, the short arm of the twelfth chromosome. This leads to the development of tetrasomy 12p. Because not all cells have the extra isochromosome, Pallister-Killian is a mosaic condition (more readily detected in skin fibroblasts).
It was first described by Philip Pallister in 1977 and further researched by Maria Teschler-Nicola and Wolfgang Killian in 1981.
Many sources classify Proteus syndrome to be a type of nevus syndrome. The lesions appear to be distributed in a mosaic manner. It has been confirmed that the disorder is an example of genetic mosaicism.
Normally humans have 2 copies of chromosome 16, one inherited by each parent. This chromosome represents almost 3% of all DNA in cells.
Diploid-triploid mosaicism (DTM) is a chromosome disorder. Individuals with diploid-triploid syndrome have some cells with three copies of each chromosome for a total of 69 chromosomes (called triploid cells) and some cells with the usual 2 copies of each chromosome for a total of 46 chromosomes (called diploid cells).
Having two or more different cell types is called mosaicism. Diploid-triploid mosaicism can be associated with truncal obesity, body/facial asymmetry, weak muscle tone (hypotonia), delays in growth, mild differences in facial features, fusion or webbing between some of the fingers and/or toes (syndactyly) and irregularities in the skin pigmentation.
Intellectual disabilities may be present but are highly variable from person to person ranging from mild to more severe.
The chromosome disorder is usually not present in the blood; a skin biopsy, or analyzing cells in the urine is needed to detect the triploid cells.
A regular human carries 23 pairs of chromosomes in his or her cells. Cells containing two pairs of chromosomes are known as diploid cells. Those with diploid triploid mosaicism have some cells which are triploid, meaning that they have three copies of chromosomes, or a total of 69 chromosomes. Triploidy is distinct from trisomy, in which only one chromosome exists in three pairs. A well-known example of trisomy is trisomy 21 or Down syndrome.
Trisomy 22 is a chromosomal disorder in which there are three copies of chromosome 22 rather than two. It is a frequent cause of spontaneous abortion during the first trimester of pregnancy. Progression to the second trimester and live birth are rare. This disorder is found in individuals with an extra copy or a variation of chromosome 22 in some or all cells of their body. There are many kinds of disorders associated with Trisomy 22:
Emanuel Syndrome is named after the genetic contributions made by researcher Dr. Beverly Emanuel. This condition is assigned to individuals born with an unbalanced 11/22 translocation. That is, a fragment of chromosome 11 is moved, or translocated, to chromosome 22.
22q11 Deletion Syndrome is a rare condition which occurs in approximately 1 in 4000 births. This condition is identified when a band in the q11.2 section of the arm of chromosome 22 is missing or deleted. This condition has several different names: 22q11.2 Deletion Syndrome, Velocardiofacial syndrome, DiGeorge Syndrome, Conotruncal Anomaly Face syndrome, Opitz G/BBB Syndrome, and Cayler Cardiofacial Syndrome. The effects of this disorder are different in each individual but similarities exist such as heart defects, immune system problems, a distinctive facial appearance, learning challenges, cleft palate, hearing loss, kidney problems, hypocalcemia, and sometimes psychiatric issues.
22q11 microduplication syndrome is the opposite of the 22q11 deletion syndrome: in this condition, a band of q.11.2 section of chromosome 22 is duplicated. Individuals carrying this deficiency are relatively “normal” as in they don’t possess any major birth defects or major medical illnesses. This microduplication is more common than the deletion; this might be due to the milder phenotype of the individuals.
Phelan-McDermid Syndrome / 22q13 Deletion Syndrome is a condition caused by the deletion of the tip of the q arm on chromosome 22. Most individuals with this disorder experience cognitive delays; low muscle tone; and sleeping, eating, and behavioural issues.
Chromosome Ring 22 is a rare disorder caused by the break and re-join of both ends of chromosome 22, forming a ring. The effects on the individual with this disorder are dependent on the amount of genetic information lost during the break/re-join. Major characteristics for this disorder are intellectual disability, muscle weakness and lack of coordination.
Cat Eye Syndrome / Schmid Fraccaro Syndrome is a condition caused by a partial trisomy or tetrasomy in chromosome 22. A small extra chromosome is found, made up of the top half of chromosome 22 and a portion of the q arm at the q11.2 break. This chromosome can be found three or four times. This syndrome is referred as “Cat Eye” due to the eye appearance of reported affected individuals who have coloboma of the iris; however, this feature is only seen in about half of the cases.
Mosaic trisomy 22 is a disorder in which an extra chromosome 22 is found only in some cells of the body. The severity of each case is determined by the number of cells with this extra copy. Some characteristics of individuals with this condition are cardiac abnormalities, growth retardation, mental delay, etc.
Complete Trisomy 22 is in contrast with Mosaic trisomy 22; this disorder is characterized by an extra copy of chromosome 22 which is found in each cell of the body of the affected individual. These cases are very rare, and most of the affected individuals die before birth or shortly after.
Craniofrontonasal dysplasia is a very rare genetic condition. As such there is little information and no consensus in the published literature regarding the epidemiological statistics.
The incidence values that were reported ranged from 1:100,000 to 1:120,000.
Between 5 and 15% of children with Down syndrome in Sweden attend regular school. Some graduate from high school; however, most do not. Of those with intellectual disability in the United States who attended high school about 40% graduated. Many learn to read and write and some are able to do paid work. In adulthood about 20% in the United States do paid work in some capacity. In Sweden, however, less than 1% have regular jobs. Many are able to live semi-independently, but they often require help with financial, medical, and legal matters. Those with mosaic Down syndrome usually have better outcomes.
Individuals with Down syndrome have a higher risk of early death than the general population. This is most often from heart problems or infections. Following improved medical care, particularly for heart and gastrointestinal problems, the life expectancy has increased. This increase has been from 12 years in 1912, to 25 years in the 1980s, to 50 to 60 years in the developed world in the 2000s. Currently between 4 and 12% die in the first year of life. The probability of long-term survival is partly determined by the presence of heart problems. In those with congenital heart problems 60% survive to 10 years and 50% survive to 30 years of age. In those without heart problems 85% survive to 10 years and 80% survive to 30 years of age. About 10% live to 70 years of age. The National Down Syndrome Society have developed information regarding the positive aspects of life with Down syndrome.
Males with Down syndrome usually do not father children, while females have lower rates of fertility relative to those who are unaffected. Fertility is estimated to be present in 30–50% of females. Menopause typically occurs at an earlier age. The poor fertility in males is thought to be due to problems with sperm development; however, it may also be related to not being sexually active. As of 2006, three instances of males with Down syndrome fathering children and 26 cases of females having children have been reported. Without assisted reproductive technologies, around half of the children of someone with Down syndrome will also have the syndrome.
Young–Madders syndrome, alternatively known as Pseudotrisomy 13 syndrome or holoprosencephaly–polydactyly syndrome, is a genetic disorder resulting from defective and duplicated chromosomes which result in holoprosencephaly, polydactyly, facial malformations and mental retardation, with a significant variance in the severity of symptoms being seen across known cases. Many cases often suffer with several other genetic disorders, and some have presented with hypoplasia, cleft lip, cardiac lesions and other heart defects. In one case in 1991 and another in 2000 the condition was found in siblings who were the product of incest. Many cases are diagnosed prenatally and often in siblings. Cases are almost fatal in the prenatal stage with babies being stillborn.
Though it is now thought that earlier cases were misdiagnosed as other genetic disorders with similar pathology—such as Smith–Lemli–Opitz syndrome—the earliest publicised recognition of the condition as a new, hitherto unclassified, genetic disorder was made by two British doctors in Leicester in 1987. Though they identified the condition, later named for them, they did not identify the genetic anomalies responsible but suspected a link with trisomy 13 due to the similar symptoms. With only one or two occurrences documented towards the end of the decade, a group of eight doctors published a five-patient case-study in 1991 which identified the likely chromosomal factors that caused the condition, similar to but distinct from trisomy 13, and gave it the name 'holoprosencephaly–polydactyly syndrome' based on its two most prolific presenting conditions. Later research showed that the condition could manifest in patients with normal karyotypes, without duplication of the chromosomes, and the most recent genetic research implicates problems with the gene code FBXW11 as a likely cause.
Full trisomy 9 is a lethal chromosomal disorder caused by having three copies (trisomy) of chromosome number 9. It can be a viable condition if trisomy affects only part of the cells of the body (mosaicism) or in cases of partial trisomy (trisomy 9p) in which cells have a normal set of two entire chromosomes 9 plus part of a third copy, usually of the short arm of the chromosome (arm p).
Triple X syndrome occurs in around 1 in 1,000 girls. On average, five to ten girls with triple X syndrome are born in the United States each day.