Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Fever and sickness behavior and other signs of infection are often taken to be due to them. However, they are evolved physiological and behavioral responses of the host to clear itself of the infection. Instead of incurring the costs of deploying these evolved responses to infections, the body opts to tolerate an infection as an alternative to seeking to control or remove the infecting pathogen.
Subclinical infections are important since they allow infections to spread from a reserve of carriers. They also can cause clinical problems unrelated to the direct issue of infection. For example, in the case of urinary tract infections in women, this infection may cause preterm delivery if the person becomes pregnant without proper treatment.
An individual may only develop signs of an infection after a period of subclinical infection, a duration that is called the incubation period. This is the case, for example, for subclinical sexually transmitted diseases such as AIDS and genital warts. Individuals with such subclinical infections, and those that never develop overt illness, creates a reserve of individuals that can transmit an infectious agent to infect other individuals. Because such cases of infections do not come to clinical attention, health statistics can often fail to measure the true prevalence of an infection in a population, and this prevents the accurate modeling of its infectious transmission.
One strategy for the prevention of infection transmission between cats and people is to better educate people on the behaviour that puts them at risk for becoming infected.
Those at the highest risk of contracting a disease from a cat are those with behaviors that include: being licked, sharing food, sharing kithchen utensils, kissing, and sleeping with a cat. The very young, the elderly and those who are immunocompromised increase their risk of becoming infected when sleeping with their cats (and dogs). The CDC recommends that cat owners not allow a cat to lick your face because it can result in disease transmission. If someone is licked on their face, mucous membranes or an open wound, the risk for infection is reduced if the area is immediately washed with soap and water. Maintaining the health of the animal by regular inspection for fleas and ticks, scheduling deworming medications along with veterinary exams will also reduce the risk of acquiring a feline zoonosis.
Recommendations for the prevention of ringworm transmission to people include:
- regularly vacuuming areas of the home that pets commonly visit helps to remove fur or flakes of skin
- washing the hands with soap and running water after playing with or petting your pet.
- wearing gloves and long sleeves when handling cats infected with.
- disinfect areas the pet has spent time in, including surfaces and bedding.
- the spores of this fungus can be killed with common disinfectants like chlorine bleach diluted 1:10 (1/4 cup in 1 gallon of water), benzalkonium chloride, or strong detergents.
- not handling cats with ringworm by those whose immune system is weak in any way (if you have HIV/AIDS, are undergoing cancer treatment, or are taking medications that suppress the immune system, for example).
- taking the cat to the veterinarian if ringworm infection is suspected.
Immunodeficiency or immunosuppression can be caused by:
- Malnutrition
- Fatigue
- Recurrent infections
- Immunosuppressing agents for organ transplant recipients
- Advanced HIV infection
- Chemotherapy for cancer
- Genetic predisposition
- Skin damage
- Antibiotic treatment leading to disruption of the physiological microbiome, thus allowing some microorganisms to outcompete others and become pathogenic (e.g. disruption of intestinal flora may lead to "Clostridium difficile" infection
- Medical procedures
- Pregnancy
- Ageing
- Leukopenia (i.e. neutropenia and lymphocytopenia)
The lack of or the disruption of normal vaginal flora allows the proliferation of opportunistic microorganisms and will cause the opportunistic infection - bacterial vaginosis.
Since opportunistic infections can cause severe disease, much emphasis is placed on measures to prevent infection. Such a strategy usually includes restoration of the immune system as soon as possible, avoiding exposures to infectious agents, and using antimicrobial medications ("prophylactic medications") directed against specific infections.
Sixty percent of mothers of preterm infants are infected with cytomegalovirus (CMV). Infection is asymptomatic in most instances but 9% to 12% of postnatally infected low birth weight, preterm infants have severe, sepsis-like infection. CMV infection duration can be long and result in pneumonitis in association with fibrosis. CMV infection in infants has an unexpected effect on the white blood cells of the immune system causing them to prematurely age. This leads to a reduced immune response similar to that found in the elderly.
Human immunodeficiency virus type I (HIV) infection can occur during labor and delivery, in utero through mother-to-child transmission or postnatally by way of breastfeeding. Transmission can occur during pregnancy, delivery or breastfeeding. Most transmission occurs during delivery. In women with low detectable levels of the virus, the incidence of transmission is lower. Transmission risk can be reduced by:
- providing antiretroviral therapy during pregnancy and immediately after birth
- delivery by caesarean section
- not breastfeeding
- antiretroviral prophylaxis in infants born to mothers with HIV.
A low number of women whose HIV status are unknown until after the birth, do not benefit from interventions that could help lower the risk of mother-to-child HIV transmission.
Most healthy people working with infants and children face no special risk from CMV infection. However, for women of child-bearing age who previously have not been infected with CMV, there is a potential risk to the developing unborn child (the risk is described above in the Pregnancy section). Contact with children who are in day care, where CMV infection is commonly transmitted among young children (particularly toddlers), may be a source of exposure to CMV. Since CMV is transmitted through contact with infected body fluids, including urine and saliva, child care providers (meaning day care workers, special education teachers, as well as mothers) should be educated about the risks of CMV infection and the precautions they can take. Day care workers appear to be at a greater risk than hospital and other health care providers, and this may be due in part to the increased emphasis on personal hygiene in the health care setting.
Recommendations for individuals providing care for infants and children:
- Employees should be educated concerning CMV, its transmission, and hygienic practices, such as handwashing, which minimize the risk of infection.
- Susceptible nonpregnant women working with infants and children should not routinely be transferred to other work situations.
- Pregnant women working with infants and children should be informed of the risk of acquiring CMV infection and the possible effects on the unborn child.
- Routine laboratory testing for CMV antibody in female workers is not specifically recommended due to its high occurrence, but can be performed to determine their immune status.
Worldwide, approximately 1 in 100 to 500 babies are born with congenital CMV. Approximately 1 in 3000 will show symptoms and 1 in 7000 will die.
Congenital HCMV infection occurs when the mother suffers a primary infection (or reactivation) during pregnancy. Due to the lower seroprevalence of HCMV in industrialized countries and higher socioeconomic groups, congenital infections are actually less common in poorer communities, where more women of child-bearing age are already seropositive. In industrialized countries up to 8% of HCMV seronegative mothers contract primary HCMV infection during pregnancy, of which roughly 50% will transmit to the fetus. Between 22–38% of infected fetuses are then born with symptoms, which may include pneumonia, gastrointestinal, retinal and neurological disease. HCMV infection occurs in roughly 1% of all neonates with those who are not congenitally infected contracting the infection possibly through breast milk. Other sources of neonatal infection are bodily fluids which are known to contain high titres in shedding individuals: saliva (<10copies/ml) and urine (<10copies/ml ) seem common routes of transmission.
The incidence of primary CMV infection in pregnant women in the United States varies from 1% to 3%. Healthy pregnant women are not at special risk for disease from CMV infection. When infected with CMV, most women have no symptoms and very few have a disease resembling infectious mononucleosis. It is their developing fetuses that may be at risk for congenital CMV disease. CMV remains the most important cause of congenital viral infection in the United States. HCMV is the most common cause of congenital infection in humans and intrauterine primary infections are more common than other well-known infections and syndromes, including Down Syndrome, Fetal Alcohol Syndrome, Spina Bifida, and Pediatric HIV/AIDS.
Congenital toxoplasmosis is a specific form of toxoplasmosis in which an unborn fetus is infected via the placenta. Congenital toxoplasmosis is associated with fetal death and abortion, and in infants, it is associated with neurologic deficits, neurocognitive deficits, and chorioretinitis. A positive antibody titer indicates previous exposure and immunity, and largely ensures the unborn fetus' safety. A simple blood draw at the first prenatal doctor visit can determine whether or not a woman has had previous exposure and therefore whether or not she is at risk. If a woman receives her first exposure to "T. gondii" while pregnant, the fetus is at particular risk.
Not much evidence exists around the effect of education before pregnancy to prevent congenital toxoplasmosis. However educating parents before the baby is born has been suggested to be effective because it may improve food, personal and pet hygiene. More research is needed to find whether antenatal education can reduce congenital toxoplasmosis.
For pregnant women with negative antibody titers, indicating no previous exposure to "T. gondii", serology testing as frequent as monthly is advisable as treatment during pregnancy for those women exposed to "T. gondii" for the first time dramatically decreases the risk of passing the parasite to the fetus. Since a baby's immune system does not develop fully for the first year of life, and the resilient cysts that form throughout the body are very difficult to eradicate with antiprotozoans, an infection can be very serious in the young.
Despite these risks, pregnant women are not routinely screened for toxoplasmosis in most countries, for reasons of cost-effectiveness and the high number of false positives generated; Portugal, France, Austria, Uruguay, and Italy are notable exceptions, and some regional screening programmes operate in Germany, Switzerland and Belgium. As invasive prenatal testing incurs some risk to the fetus (18.5 pregnancy losses per toxoplasmosis case prevented), postnatal or neonatal screening is preferred. The exceptions are cases where fetal abnormalities are noted, and thus screening can be targeted.
Pregnant women should avoid handling raw meat, drinking raw milk (especially goat milk) and be advised to not eat raw or undercooked meat regardless of type. Because of the obvious relationship between "Toxoplasma" and cats it is also often advised to avoid exposure to cat feces, and refrain from gardening (cat feces are common in garden soil) or at least wear gloves when so engaged. Most cats are not actively shedding oocysts, since they get infected in the first six months of their life, when they shed oocysts for a short period of time (1–2 weeks.) However, these oocysts get buried in the soil, sporulate and remain infectious for periods ranging from several months to more than a year. Numerous studies have shown living in a household with a cat is not a significant risk factor for "T. gondii" infection, though living with several kittens has some significance.
In 2006, a Czech research team discovered women with high levels of toxoplasmosis antibodies were significantly more likely to have baby boys than baby girls. In most populations, the birth rate is around 51% boys, but women infected with "T. gondii" had up to a 72% chance of a boy. In mice, the sex ratio was higher in early latent toxoplasmosis and lower in later latent toxoplasmosis.
Transmission of Chagas disease has been documented and is associated with sleeping with cats.
Babies can also become infected by their mothers during birth. Some infectious agents may be transmitted to the embryo or fetus in the uterus, while passing through the birth canal, or even shortly after birth. The distinction is important because when transmission is primarily during or after birth, medical intervention can help prevent infections in the infant.
During birth, babies are exposed to maternal blood, body fluids, and to the maternal genital tract without the placental barrier intervening. Because of this, blood-borne microorganisms (hepatitis B, HIV), organisms associated with sexually transmitted disease (e.g., "Neisseria gonorrhoeae" and "Chlamydia trachomatis"), and normal fauna of the genitourinary tract (e.g., "Candida albicans") are among those commonly seen in infection of newborns.
Each type of vertically transmitted infection has a different prognosis. The stage of the pregnancy at the time of infection also can change the effect on the newborn.
Carrión's disease, or Oroya fever, or Peruvian wart is a rare infectious disease found only in Peru, Ecuador, and Colombia. It is endemic in some areas of Peru, is caused by infection with the bacterium "Bartonella bacilliformis", and transmitted by sandflies of genus "Lutzomyia".
Cat scratch disease occurs worldwide. Cats are the main reservoir of "Bartonella henselae", and the bacterium is transmitted to cats by the cat flea "Ctenocephalides felis". Infection in cats is very common with a prevalence estimated between 40-60%, younger cats being more commonly infective. Cats usually become immune to the infection, while dogs may be very symptomatic. Humans may also acquire it through flea or tick bites from infected dogs, cats, coyotes, and foxes.
Trench fever, produced by "Bartonella quintana" infection, is transmitted by the human body louse "Pediculus humanus corporis". Humans are the only known reservoir. Thorough washing of clothing may help to interrupt the transmission of infection.
A possible role for ticks in transmission of "Bartonella" species remains to be elucidated; in November 2011, "Bartonella rochalimae", "B. quintana", and "B. elizabethae" DNA was first reported in "Rhipicephalus sanguineus" and "Dermacentor nitens" ticks in Peru.
Toxoplasmosis is generally transmitted through the mouth when "Toxoplasma gondii" cysts are accidentally eaten. Congenital transmittance from mother to fetus can also occur. Transmission may also occur during the solid organ transplant process or hematogenous stem cell transplants.
Oral transmission may occur through:
- Ingestion of raw or partly cooked meat, especially pork, lamb, or venison containing "Toxoplasma" cysts: Infection prevalence in countries where undercooked meat is traditionally eaten has been related to this transmission method. Tissue cysts may also be ingested during hand-to-mouth contact after handling undercooked meat, or from using knives, utensils, or cutting boards contaminated by raw meat.
- Ingestion of unwashed fruit or vegetables that have been in contact with contaminated soil containing infected cat feces.
- Ingestion of contaminated cat feces: This can occur through hand-to-mouth contact following gardening, cleaning a cat's litter box, contact with children's sandpits; the parasite can survive in the environment for months.
- Ingestion of untreated, unfiltered water through direct consumption or utilization of water for food preparation.
- Ingestion of unpasteurized milk and milk products, particularly goat’s milk.
- Ingestion of raw seafood.
Cats excrete the pathogen in their feces for a number of weeks after contracting the disease, generally by eating an infected rodent. Even then, cat feces are not generally contagious for the first day or two after excretion, after which the cyst 'ripens' and becomes potentially pathogenic. In addition to cats, birds and mammals including human beings are also intermediate host of the spores and are involved in the transmission process. However the pathogenicity varies with the age and species involved in infection and the mode of transmission of "T. gondii".
Toxoplasmosis may also be transmitted through solid organ transplants. Toxoplasma-seronegative recipients who receive organs from recently-infected Toxoplasma-seropositive donors are at risk. Organ recipients who have latent toxoplasmosis are at risk of the disease reactivating in their system due to the immunosuppression occurring during solid organ transplant. Recipients of hematogenous stem cell transplants may experience higher risk of infection due to longer periods of immunosuppression.
Heart and lung transplants provide the highest risk for toxoplasmosis infection due to the striated muscle making up the heart, which can contain cysts, and risks for other organs and tissues vary widely. Risk of transmission can be reduced by screening donors and recipients prior to the transplant procedure and providing treatment.
The current incidence in the United States is somewhere around 0.5% per year; overall, the incidence rate for developed world falls between 0.2–0.7%. In developing countries, the incidence of omphalitis varies from 2 to 7 for 100 live births. There does not appear to be any racial or ethnic predilection.
Like many bacterial infections, omphalitis is more common in those patients who have a weakened or deficient immune system or who are hospitalized and subject to invasive procedures. Therefore, infants who are premature, sick with other infections such as blood infection (sepsis) or pneumonia, or who have immune deficiencies are at greater risk. Infants with normal immune systems are at risk if they have had a prolonged birth, birth complicated by infection of the placenta (chorioamnionitis), or have had umbilical catheters.
Doxycycline is the drug of choice, but azithromycin is also used as a five-day course rather than a single dose that would be used to treat "Chlamydia" infection; streptomycin is an alternative, but is less popular because it must be injected. Penicillins are ineffective — "U. urealyticum" does not have a cell wall, which is the drug's main target.
Infection in the newborn is accompanied by a strong immune response and is correlated with the need for prolonged mechanical ventilation.
Infection with "U. urealyticum" in pregnancy and birth can be complicated by chorioamnionitis, stillbirth, premature birth, and, in the perinatal period, pneumonia, bronchopulmonary dysplasia and meningitis. "U. urealyticum" has been found to be present in amniotic fluid in women who have had a premature birth with intact fetal membranes.
"U. urealyticum" has been noted as one of the infectious causes of sterile pyuria. It increases the morbidity as a cause of neonatal infections. It is associated with premature birth, preterm rupture of membranes, preterm labor, cesarean section, placental inflammation, congenital pneumonia, bacteremia, meningitis, fetal lung injury and death of infant. "Ureaplasma urealyticum" is associated with miscarriage.
Treatment of infections caused by "Bartonella" species include:
Some authorities recommend the use of azithromycin.
When proper treatment is provided for patients with rat-bite fever, the prognosis is positive. Without treatment, the infection usually resolves on its own, although it may take up to a year to do so. A particular strain of rat-bite fever in the United States can progress and cause serious complications that can be potentially fatal. Before antibiotics were used, many cases resulted in death. If left untreated, streptobacillary rat-bite fever can result in infection in the lining of the heart, covering over the spinal cord and brain, or in the lungs. Any tissue or organ throughout the body may develop an abscess.
Research has shown a link between trichomoniasis and two serious sequelae. Data suggest that:
- Trichomoniasis is associated with increased risk of transmission and infection of HIV.
- Trichomoniasis may cause a woman to deliver a low-birth-weight or premature infant.
- The role of trichomonas infection in causing cervical cancer is unclear, although trichomonas infection may be associated with co-infection with high-risk strains of HPV.
- "T. vaginalis" infection in males has been found to cause asymptomatic urethritis and prostatitis. In the prostate, it may create chronic inflammation that may eventually lead to prostate cancer.
Pyomyositis is most often caused by the bacterium "Staphylococcus aureus". The infection can affect any skeletal muscle, but most often infects the large muscle groups such as the quadriceps or gluteal muscles.
Pyomyositis is mainly a disease of children and was first described by Scriba in 1885. Most patients are aged 2 to 5 years, but infection may occur in any age group. Infection often follows minor trauma and is more common in the tropics, where it accounts for 4% of all hospital admissions. In temperate countries such as the US, pyomyositis was a rare condition (accounting for 1 in 3000 pediatric admissions), but has become more common since the appearance of the USA300 strain of MRSA.
This depends on the age of the animal affected and the efficiency of its immune system.
Colostral protection lasts up to 5 months of age, after which it decreases to an all-time low to increase yet again at about 12 months of age.
- Prenatal infection: virus travels from infected mother to fetus via the placenta. In this case, the time of gestation determines the result of the infection.
- If the fetus is infected in the first 30 days of fetal life, death and absorption of all, or some of the fetuses may occur. In this case, some immunotolerant healthy piglets may be born.
- If the infection happens at 40 days, death and mummification may occur. Also in this case, some or all the fetuses are involved, i.e. some of the fetuses can be born healthy and immunotolerant, or else carriers of the disease.
- If the viruses crosses the placenta in the last trimester, neonatal death may occur, or the birth of healthy piglets with a protective pre-colostral immunity.
- Postnatal infection (pigs up to 1 year of age): Infection occurs oro-nasally, followed by a viremic period associated with transitory leucopenia.
- Infection in adults (over 1 year of age): These subject would have an active, protective immune system which protects them from future exposures (e.g. mating with an infected male).
Therefore, it is important to note that the virus is particularly dangerous for the sow in her first gestation, which would be at 7–8 months of age, as she would have a particularly low antibody count at this age and could easily contract the virus via copulation.
While obviously preventable by staying away from rodents, otherwise hands and face should be washed after contact and any scratches both cleaned and antiseptics applied. The effect of chemoprophylaxis following rodent bites or scratches on the disease is unknown. No vaccines are available for these diseases.
Improved conditions to minimize rodent contact with humans are the best preventive measures. Animal handlers, laboratory workers, and sanitation and sewer workers must take special precautions against exposure. Wild rodents, dead or alive, should not be touched and pets must not be allowed to ingest rodents.
Those living in the inner cities where overcrowding and poor sanitation cause rodent problems are at risk from the disease. Half of all cases reported are children under 12 living in these conditions.
Most household disinfectants will inactivate FHV-1. The virus can survive up to 18 hours in a damp environment, but less in a dry environment and only shortly as an aerosol.