Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
DSPD is genetically linked to attention deficit hyperactivity disorder by findings of polymorphism in genes in common between those apparently involved in ADHD and those involved in the circadian rhythm and a high proportion of DSPD among those with ADHD.
A survey of 1.1 million residents in the United States found that those that reported sleeping about 7 hours per night had the lowest rates of mortality, whereas those that slept for fewer than 6 hours or more than 8 hours had higher mortality rates. Getting 8.5 or more hours of sleep per night was associated with a 15% higher mortality rate. Severe insomnia – sleeping less than 3.5 hours in women and 4.5 hours in men – is associated with a 15% increase in mortality.
With this technique, it is difficult to distinguish lack of sleep caused by a disorder which is also a cause of premature death, versus a disorder which causes a lack of sleep, and the lack of sleep causing premature death. Most of the increase in mortality from severe insomnia was discounted after controlling for co-morbid disorders. After controlling for sleep duration and insomnia, use of sleeping pills was also found to be associated with an increased mortality rate.
The lowest mortality was seen in individuals who slept between six and a half and seven and a half hours per night. Even sleeping only 4.5 hours per night is associated with very little increase in mortality. Thus, mild to moderate insomnia for most people is associated with increased longevity and severe insomnia is associated only with a very small effect on mortality. It is unclear why sleeping longer than 7.5 hours is associated with excess mortality.
There have been many studies suggesting health risks associated with shift work. For example, a 2007 study led by the IARC (International Agency for Research on Cancer) showed that shiftwork has been associated with cancer. Other studies have reported that night workers have an increased incidence of heart disease, digestive disorders and menstrual irregularities. Because a formal diagnosis of SWSD was not typically made in these studies, it remains unclear whether the reported risks apply to the subset of shiftworkers who qualify for a diagnosis of SWSD or apply to all shiftworkers.
Persons with obsessive-compulsive disorder are also diagnosed with DSPD at a much higher rate than the general public.
Waking up in the middle of the night, or nocturnal awakening, is the most frequently reported insomnia symptom, with approximately 35% of Americans over 18 reporting waking up three or more times per week. Of those who experience nocturnal awakenings, 43% report difficulty in resuming sleep after waking, while over 90% report the condition persisting for more than six months. Greater than 50% contend with MOTN conditions for more than five years.
A 2008 "Sleep in America" poll conducted by the National Sleep Foundation found that 42% of respondents awakened during the night at least a few nights a week, and 29% said they woke up too early and couldn’t get back to sleep. Other clinical studies have reported between 25% and 35% of people experience nocturnal awakenings at least three nights a week.
Histamine plays a role in wakefulness in the brain. An allergic reaction over produces histamine causing wakefulness and inhibiting sleep Sleep problems are common in people with allergic rhinitis. A study from the N.I.H. found that sleep is dramatically impaired by allergic symptoms and that the degree of impairment is related to the severity of those symptoms s Treatment of allergies has also been shown to help sleep apnea.
Insomnia affects people of all age groups but people in the following groups have a higher chance of acquiring insomnia.
- Individuals older than 60
- History of mental health disorder including depression, etc.
- Emotional stress
- Working late night shifts
- Traveling through different time zones
What is considered objective insomnia, unlike SSM, can easily be confirmed empirically through clinical testing, such as by polysomnogram. Those who experience SSM may believe that they have not slept for extended periods of time, when they in fact do sleep but without perceiving it. For example, while patients who claim little or no sleep may usually acknowledge impaired job performance and daytime drowsiness, sleep state misperceivers often do not.
Cases of objective total insomnia are extremely rare. The few that have been recorded have predominantly been ascribed to a rare incurable genetic disorder called fatal familial insomnia, which patients rarely survive for more than 26 months after the onset of illness—often much less. While rarer cases of objective total insomnia lasting for decades have been reported, such as with the American Al Herpin and the Vietnamese Thai Ngoc, they have not been studied extensively in a clinical setting.
SSM is poorly understood. As of 2008, there is little to no information regarding risk factors or prevention, though it is believed to be most prevalent among young to middle aged adults.
Distribution among the general population and by gender is unknown. About 5% of the clinical population may be affected, though that figure is subject to sampling bias.
Insomnia and wake-time sleepiness are related to misalignment between the timing of the non-standard wake–sleep schedule and the endogenous circadian propensity for sleep and wake. In addition to circadian misalignment, attempted sleep at unusual times can be interrupted by noise, social obligations, and other factors. Finally, there is an inevitable degree of sleep deprivation associated with sudden transitions in sleep schedule.
Although "there has been no cure of chronic hypersomnia", there are several treatments that may improve patients' quality of life, depending on the specific cause or causes of hypersomnia that are diagnosed.
Secondary hypersomnias are extremely numerous.
Hypersomnia can be secondary to disorders such as clinical depression, multiple sclerosis, encephalitis, epilepsy, or obesity. Hypersomnia can also be a symptom of other sleep disorders, like sleep apnea. It may occur as an adverse effect of taking certain medications, of withdrawal from some medications, or of drug or alcohol abuse. A genetic predisposition may also be a factor. In some cases it results from a physical problem, such as a tumor, head trauma, or dysfunction of the autonomic or central nervous system.
Sleep apnea is the most frequent cause of secondary hypersomnia, affecting up to 4% of middle-aged adults, mostly men. Upper airway resistance syndrome (UARS) is a clinical variant of sleep apnea that can also cause hypersomnia. Just as other sleep disorders (like narcolepsy) can coexist with sleep apnea, the same is true for UARS. There are many cases of UARS in which EDS persists after CPAP treatment, indicating an additional cause, or causes, of the hypersomnia and requiring further evaluation.
Sleep movement disorders, such as restless legs syndrome (RLS) and periodic limb movement disorder (PLMD or PLMS) can also cause secondary hypersomnia. Although RLS does commonly cause EDS, PLMS does not. There is no evidence that PLMS plays "a role in the etiology of daytime sleepiness. In fact, two studies showed no correlation between PLMS and objective measures of EDS. In addition, EDS in these patients is best treated with psychostimulants and not with dopaminergic agents known to suppress PLMS."
Neuromuscular diseases and spinal cord diseases often lead to sleep disturbances due to respiratory dysfunction causing sleep apnea, and they may also cause insomnia related to pain. "Other sleep alterations, such as periodic limb movement disorders in patients with spinal cord disease, have also been uncovered with the widespread use of polysomnography."
Primary hypersomnia in diabetes, hepatic encephalopathy, and acromegaly is rarely reported, but these medical conditions may also be associated with the secondary hypersomnias sleep apnea and periodic limb movement disorder (PLMD).
Chronic fatigue syndrome and fibromyalgia can also be associated with hypersomnia. Regarding chronic fatigue syndrome, it is "characterized by persistent or relapsing fatigue that does not resolve with sleep or rest. Polysomnography shows reduced sleep efficiency and may include alpha intrusion into sleep EEG. It is likely that a number of cases labeled as chronic fatigue syndrome are unrecognized cases of upper airway resistance syndrome" or other sleep disorders, such as narcolepsy, sleep apnea, PLMD, etc.
Similarly to chronic fatigue syndrome, fibromyalgia also may be associated with anomalous alpha wave activity (typically associated with arousal states) during NREM sleep. Also, researchers have shown that disrupting stage IV sleep consistently in young, healthy subjects causes a significant increase in muscle tenderness similar to that experienced in "neurasthenic musculoskeletal pain syndrome". This pain resolved when the subjects were able to resume their normal sleep patterns.
Chronic kidney disease is commonly associated with sleep symptoms and excessive daytime sleepiness. For those on dialysis, approximately 80% have sleep disturbances. Sleep apnea can occur 10 times as often in uremic patients than in the general population and can affect up to 30-80% of patients on dialysis, though nighttime dialysis can improve this. About 50% of dialysis patients have hypersomnia, as severe kidney disease can cause uremic encephalopathy, increased sleep-inducing cytokines, and impaired sleep efficiency. About 70% of dialysis patients are affected by insomnia, and RLS and PLMD affect 30%, though these may improve after dialysis or kidney transplant.
Most forms of cancer and their therapies can cause fatigue and disturbed sleep, affecting 25-99% of patients and often lasting for years after treatment completion. "Insomnia is common and a predictor of fatigue in cancer patients, and polysomnography demonstrates reduced sleep efficiency, prolonged initial sleep latency, and increased wake time during the night." Paraneoplastic syndromes can also cause insomnia, hypersomnia, and parasomnias.
Autoimmune diseases, especially lupus and rheumatoid arthritis are often associated with hypersomnia, as well. Morvan's syndrome is an example of a more rare autoimmune illness that can also lead to hypersomnia. Celiac disease is another autoimmune disease associated with poor sleep quality (which may lead to hypersomnia), "not only at diagnosis but also during treatment with a gluten-free diet." There are also some case reports of central hypersomnia in celiac disease. And RLS "has been shown to be frequent in celiac disease," presumably due to its associated iron deficiency.
Hypothyroidism and iron deficiency with or without (iron-deficiency anemia) can also cause secondary hypersomnia. Various tests for these disorders are done so they can be treated. Hypersomnia can also develop within months after viral infections such as Whipple's disease, mononucleosis, HIV, and Guillain–Barré syndrome.
Behaviorally induced insufficient sleep syndrome must also be considered in the differential diagnosis of secondary hypersomnia. This disorder occurs in individuals who fail to get sufficient sleep for at least three months. In this case, the patient has chronic sleep deprivation although he or she is not necessarily aware of it. This situation is becoming more prevalent in western society due to the modern demands and expectations placed upon the individual.
Many medications can also lead to secondary hypersomnia. Therefore, a patient's complete medication list should be carefully reviewed for sleepiness or fatigue as side effects. In these cases, careful withdrawal from the possibly offending medication(s) is needed; then, medication substitution can be undertaken.
Mood disorders, like depression, anxiety disorder and bipolar disorder, can also be associated with hypersomnia. The complaint of EDS in these conditions is often associated with poor sleep at night. "In that sense, insomnia and EDS are frequently associated, especially in cases of depression." Hypersomnia in mood disorders seems to be primarily related to "lack of interest and decreased energy inherent in the depressed condition rather than an increase in sleep or REM sleep propensity". In all cases with these mood disorders, the MSLT is normal (not too short and no SOREMPs).
According to one meta-analysis, the mean prevalence rate for North America and Western Europe is estimated to be 14.5±8.0%. Specifically in the United States, the prevalence of restless leg syndrome is estimated to be between 5 and 15.7% when using strict diagnostic criteria. RLS is over 35% more prevalent in American women than their male counterparts.
Nocturnal awakenings are more common in older patients and have been associated with depressive disorders, chronic pain, obstructive sleep apnea, obesity, alcohol consumption, hypertension, gastroesophageal reflux disease, heart disease, menopause, prostate problems, and bipolar disorders.
Nocturnal awakenings can be mistaken as shift work disorder.
There are an estimated 140,000 people with N24 – both sighted and blind – in the European Union, a total prevalence of approximately 3 per 10,000, or 0.03%. It is unknown how many individuals with this disorder do not seek medical attention, so incidence may be higher. The European portal for rare diseases, Orphanet, lists Non-24 as a rare disease by their definition: fewer than 1 affected person for every 2000 population. The US National Organization for Rare Disorders (NORD) lists Non-24 as a rare disease by its definition.
There are over 30 recognized kinds of dyssomnias. Major groups of dyssomnias include:
- Intrinsic sleep disorders – 12 disorders recognized, including
- idiopathic hypersomnia,
- narcolepsy,
- periodic limb movement disorder,
- restless legs syndrome,
- sleep apnea,
- sleep state misperception.
- Extrinsic sleep disorders – 13 disorders recognized, including
- alcohol-dependent sleep disorder,
- food allergy insomnia,
- inadequate sleep routine.
- Circadian rhythm sleep disorders, both intrinsic and extrinsic – 6 disorders recognized, including
- advanced sleep phase syndrome,
- delayed sleep phase syndrome,
- jetlag,
- shift work sleep disorder.
Sexsomnia affects individuals of all age groups and backgrounds but present as an increased risk for individuals who possess the following:
- coexisting sleep disorders
- sleep disruption secondary to obstructive sleep apnea
- sleep related epilepsy
- certain medications
Behaviors of pelvic thrusting, sexual arousal, and orgasms are often attributed to sleep related epilepsy disorder. In some cases, physical contact with a partner in bed acted as a trigger to initiate sexsomia behaviors.
Medications, such as the commonly prescribed treatment for insomnia, Ambien, have been shown to induce symptoms commonly associated with sexsomnia.
Like sleep-related eating disorders, sexsomnia presents more commonly in adults than children. However, these individuals usually have a history of parasomnias that began during childhood.
In general, there are two broad classes of treatment, and the two may be combined: psychological (cognitive-behavioral) and pharmacological. In situations of acute distress such as a grief reaction, pharmacologic measures may be most appropriate. With primary insomnia, however, initial efforts should be psychologically based, including discussion of good sleep hygiene. Other specific treatments are appropriate for some of the disorders, such as ingestion of the hormone melatonin, correctly timed bright light therapy and correctly timed dark therapy or light restriction for the circadian rhythm sleep disorders. Specialists in sleep medicine are trained to diagnose and treat these disorders, though many specialize in just some of them.
One of these disorders is extrinsic (from Latin "extrinsecus", from without, on the outside) or circumstantial:
- Shift work sleep disorder, which affects people who work nights or rotating shifts.
Formerly, jet lag, too, was classified as an extrinsic type circadian rhythm disorder.
Symptoms of sexsomnia can be caused by or be associated with:
- stress factors
- sleep deprivation
- Consumption of alcohol or other drugs
- Pre-existing parasomnia behaviors
Sleep deprivation is known to have negative effects on the brain and behavior. Extended periods of sleep deprivation often results in the malfunctioning of neurons, directly effecting an individual's behavior. While muscles are able to regenerate even in the absence of sleep, neurons are incapable of this ability. Specific stages of sleep are responsible for the regeneration of neurons while others are responsible for the generation of new synaptic connections, the formation of new memories, etc.
Zolpidem, the widely known sedative Ambien, is used as common treatment for insomnia and has been seen to result in sexsomnia as an adverse effect.
Sexsomnia can also be triggered by physical contact initiated by a partner, or an individual sharing the same bed.
As of 2005, there had been fewer than 100 cases of sighted people with non-24 reported in the scientific literature.
Possible treatments for circadian rhythm sleep disorders include:
- Behavior therapy or advice about sleep hygiene where the patient is told to avoid naps, caffeine, and other stimulants. They are also told to not be in bed for anything besides sleep and sex.
- Dark therapy, for example the use of blue-blocking goggles, is used to block blue- and bluegreen wavelength light from reaching the eye during evening hours so that the production of melatonin is not decreased or eliminated.
- Medications such as melatonin and modafinil (Provigil), or other short term sleep aids or wake-promoting agents can be beneficial; the former is a natural neurohormone responsible partly and in tiny amounts for the human body clock. The melatonin agonist Tasimelteon, trade name Hetlioz, has been approved in the USA solely for the treatment of non-24-hour sleep–wake disorder in totally blind people.
- Sleep phase chronotherapy may progressively advance or delay sleep time.
Caffeine enters the bloodstream through the stomach and small intestine and can have a stimulating effect as soon as 15 minutes after consumption. Once it is in the body, caffeine will persist for several hours, and takes about six hours for one half of the caffeine consumed to be eliminated. When caffeine reaches the brain, it increases the secretion of norepinephrine which is related to the “fight or flight” response. The rise in norepinephrine levels increases activity of neurons in areas of the brain and the symptoms resemble those of a panic attack.
Though caffeine can be shown to decrease the quality of sleep, there is no evidence that caffeine affects all people the same way. In fact, some people report no sleep problems despite regularly consuming caffeine. Regular intake of caffeine may be normal for a person so it is understandable how they may still get satisfactory sleep. This finding shows that caffeine interferes with a modulatory mechanism in sleep regulation rather than a fundamental sleep regulatory brain circuit. Ultimately, regular sleep habits are important in overall quality and timing of sleep.
Caffeine-induced sleep disorder is a psychiatric disorder that results from overconsumption of the stimulant caffeine. "When caffeine is consumed immediately before bedtime or continuously throughout the day, sleep onset may be delayed, total sleep time reduced, normal stages of sleep altered, and the quality of sleep decreased." Caffeine reduces slow-wave sleep in the early part of the sleep cycle and can reduce rapid eye movement sleep later in the cycle. Caffeine increases episodes of wakefulness, and high doses in the late evening can increase sleep onset latency. In elderly people, there is an association between use of medication containing caffeine and difficulty in falling asleep.
The specific criteria for this disorder in the fourth version of the "Diagnostic and Statistical Manual of Mental Disorders" (DSM-IV) include that there must be a significant inability to sleep which is caused entirely by the physiological effects of caffeine as proven by an examination; if sleeping issues can be accounted for due to a breathing-related sleep disorder, narcolepsy, a circadian rhythm sleep disorder or a mental disorder, then caffeine-induced sleep disorder is not the cause. This condition causes a notable impairment in functioning in sufferers.
Overconsumption:
Excessive ingestion of caffeine can lead to a state of intoxication. This period of intoxication is characterized by restlessness, agitation, excitement, rambling thought or speech, and even insomnia. Even doses of caffeine relating to just one cup of coffee can increase sleep latency and decrease the quality of sleep especially in non-REM deep sleep. A dose of caffeine taken in the morning can have these effects the following night, so one of the main practices of sleep hygiene a person can do is to cease the consumption of caffeine.
Upper airway resistance syndrome is caused when the upper airway narrows without closing. Consequently, airflow is either reduced or compensated for through an increase in inspiratory efforts. This increased activity in inspiratory muscles leads to the arousals during sleep which patients may or may not be aware of.
A typical UARS patient is not obese and possesses a triangular face and misaligned jaw, which can result in a smaller amount of space behind the base of the tongue. Patients may have other anatomical abnormalities that can cause UARS such as deviated septum or nasal valve collapse. UARS affects equal numbers of males and females. It is unclear as to whether UARS is merely a phase that occurs between simple snoring and sleep apneas, or whether UARS is a syndrome that describes a deviation from normal upper airway physiology.
Children with UARS may experience symptoms due to minor anomalies of the facial bones or due to enlarged tonsils or adenoids.