Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most individuals come to clinical attention during the 5th decade, although the age range is broad (20 to 80 years). There is an equal gender distribution.
This is a very rare neoplasm accounting for approximately 0.0003% of all tumors and about 2.5% of all external ear neoplasms. There is a wide age range at initial presentation, although the mean age is about 50 years of age. Females are affected slightly more often (1.5:1).
Myringosclerosis seems to be more common than tympanosclerosis. Most research has not been conducted upon the general, healthy population, but rather those with otitis media or patients who have had tympanostomy tubes in prior procedures. Of the children studied who had 'glue ear', and who were treated with tympanostomy tubing, 23-40% of cases had tympanosclerosis. One study suggested that people with atherosclerosis were more likely to have tympanosclerosis than otherwise healthy individuals.
In one study, the number of new cases of cholesteatoma in Iowa was estimated in 1975–6 to be just under one new case per 10,000 citizens per year. Cholesteatoma affects all age groups, from infants through to the elderly. The peak incidence occurs in the second decade.
This is an uncommon lesion, usually affecting young patients (mean age, 30 years), with a male to female ratio of 2:1. The middle ear is involved, although it may extend to the external auditory canal if there is tympanic membrane perforation.
In most cases, the cause of acoustic neuromas is unknown. The only statistically significant risk factor for developing an acoustic neuroma is having a rare genetic condition called neurofibromatosis type 2 (NF2). There are no confirmed environmental risk factors for acoustic neuroma. There are conflicting studies on the association between acoustic neuromas and cellular phone use and repeated exposure to loud noise. In 2011, an arm of the World Health Organization released a statement listing cell phone use as a low grade cancer risk. The Acoustic Neuroma Association recommends that cell phone users use a hands-free device.
Meningiomas are significantly more common in women than in men; they are most common in middle-aged women. Two predisposing factors associated with meningiomas for which at least some evidence exists are exposure to ionizing radiation (cancer treatment of brain tumors) and hormone replacement therapy.
The tumor must be removed with as complete a surgical excision as possible. In nearly all cases, the ossicular chain must be included if recurrences are to be avoided. Due to the anatomic site of involvement, facial nerve paralysis and/or paresthesias may be seen or develop; this is probably due to mass effect rather than nerve invasion. In a few cases, reconstructive surgery may be required. Since this is a benign tumor, no radiation is required. Patients experience an excellent long term outcome, although recurrences can be seen (up to 15%), especially if the ossicular chain is not removed. Although controversial, metastases are not seen in this tumor. There are reports of disease in the neck lymph nodes, but these patients have also had other diseases or multiple surgeries, such that it may represent iatrogenic disease.
People with HPV-mediated oropharyngeal cancer tend to have higher survival rates. The prognosis for people with oropharyngeal cancer depends on the age and health of the person and the stage of the disease. It is important for people with oropharyngeal cancer to have follow-up exams for the rest of their lives, as cancer can occur in nearby areas. In addition, it is important to eliminate risk factors such as smoking and drinking alcohol, which increase the risk for second cancers.
In most cases, tympanosclerosis does not cause any recognisable hearing loss up to ten years after the initial disease onset. Sclerotic changes seem to stabilise, but not resolve or dissolve, after 3 years.
The adenoids, like all lymphoid tissue, enlarge when infected. Although lymphoid tissue does act to fight infection, sometimes bacteria and viruses can lodge within it and survive. Chronic infection, either viral or bacterial, can keep the pad of adenoids enlarged for years, even into adulthood. Some viruses, such as the Epstein-Barr Virus, can cause dramatic enlargement of lymphoid tissue. Primary or reactivation infections with Epstein Barr Virus, and certain other bacteria and viruses, can even cause enlargement of the adenoidal pad in an adult whose adenoids had previously become atrophied.
While there is a wide age range at clinical presentation (12–85 years), most patients come to clinical attention at 55 years (mean). There is no gender difference.
It is important that the patient attend periodic follow-up checks, because even after careful microscopic surgical removal, cholesteatomas may recur. Such recurrence may arise many years, or even decades, after treatment.
A "residual cholesteatoma" may develop if the initial surgery failed to completely remove the original; residual cholesteatomas typically become evident within the first few years after the initial surgery.
A "recurrent cholesteatoma" is a new cholesteatoma that develops when the underlying causes of the initial cholesteatoma are still present. Such causes can include, for example, poor eustachian tube function, which results in retraction of the ear drum, and failure of the normal outward migration of skin.
In a retrospective study of 345 patients with middle ear cholesteatoma operated on by the same surgeon, the overall 5-year recurrence rate was 11.8%. In a different study with a mean follow-up period of 7.3 years, the recurrence rate was 12.3%, with the recurrence rate being higher in children than in adults.
The cause of acoustic neuromas is usually unknown; however there is a growing body of evidence that sporadic defects in tumor suppressor genes may give rise to these tumors in some individuals. In particular, loss or mutation of a tumor suppressor gene on the long arm of chromosome 22 is strongly associated with vestibular schwannomas. Other studies have hinted at exposure to loud noise on a consistent basis. One study has shown a relationship between acoustic neuromas and prior exposure to head and neck radiation, and a concomitant history of having had a parathyroid adenoma (tumor found in proximity to the thyroid gland controlling calcium metabolism). There are even controversies on hand held cellular phones. Whether or not the radiofrequency radiation has anything to do with acoustic neuroma formation, remains to be seen. To date, no environmental factor (such as cell phones or diet) has been scientifically proven to cause these tumors. The Acoustic Neuroma Association (ANA) does recommend that frequent cellular phone users use a hands free device to enable separation of the device from the head.
Although there is an inheritable condition called Neurofibromatosis Type 2 (NF2) which can lead to acoustic neuroma formation in some people, most acoustic neuromas occur spontaneously without any evidence of family history (95%). NF2 occurs with a frequency of 1 in 30,000 to 1 in 50,000 births. The hallmark of this disorder is bilateral acoustic neuromas (an acoustic neuroma on both sides) usually developing in late childhood or early adulthood, frequently associated with other brain and spinal chord tumors.
The risk factors that can increase the risk of developing oropharyngeal cancer are:
- Smoking and chewing tobacco
- Heavy alcohol use
- A diet low in fruits and vegetables
- Chewing betel quid, a stimulant commonly used in parts of Asia
- Mucosal infection with human papilloma virus (HPV) (HPV-mediated oropharyngeal cancer)
- HPV infection
- Plummer-Vinson syndrome
- Poor nutrition
- Asbestos exposure
Certain genetic changes including: P53 mutation and CDKN2A (p16) mutations.
High-risk lesions:
- Erythroplakia
- Speckled erythroplakia
- Chronic hyperplastic candidiasis
Medium-risk lesions:
- Oral submucosal fibrosis
- Syphilitic glossitis
- Sideropenic dysphagia (or Paterson-Kelly-Brown syndrome)
Low-risk lesions:
- Oral lichen planus
- Discoid lupus erythematosus
- Discoid keratosis congenita
Wide, radical, complete surgical excision is the treatment of choice, with free surgical margins to achieve the best outcome and lowest chance of recurrence. Radiation is only used for palliation. In general, there is a good prognosis, although approximately 50% of patients die from disease within 3–10 years of presentation.
Taste disturbance and mouth dryness are frequent for a few weeks following surgery. In a few patients this disturbance is longer or permanent.
The overall complication rate following surgery is around 20%; cerebrospinal fluid leak is the most common.
It may be that a genetic tendency to develop otosclerosis is inherited by some people. Then a trigger, such as a viral infection (like measles), actually causes the condition to develop.
Patients treated with complete surgical excision can expect an excellent long term outcome without any problems. Recurrences may be seen in tumors which are incompletely excised.
Verruciform xanthoma is uncommon, with a female:male ratio of 1:1.1
Nosocusis factors are those that can cause hearing loss, which are not noise-based and separate from pure presbycusis. They may include:
- Ototoxic drugs: Ingestion of ototoxic drugs like aspirin may hasten the process of presbycusis.
- vascular degeneration
- Atherosclerosis: May diminish vascularity of the cochlea, thereby reducing its oxygen supply.
- Dietary habits: Increased intake of saturated fat may accelerate atherosclerotic changes in old age.
- Smoking: Is postulated to accentuate atherosclerotic changes in blood vessels aggravating presbycusis.
- Diabetes: May cause vasculitis and endothelial proliferation in the blood vessels of the cochlea, thereby reducing its blood supply.
- Hypertension: causes potent vascular changes, like reduction in blood supply to the cochlea, thereby aggravating presbycusis.
However, a recent study found that diabetes, atherosclerosis and hypertension had no correlation to presbycusis, suggesting that these are nosocusis (acquired hearing loss) factors, not intrinsic factors.
Otosclerosis or otospongiosis is an abnormal growth of bone near the middle ear. It can result in hearing loss. The term otosclerosis is something of a misnomer. Much of the clinical course is characterised by lucent rather than sclerotic bony changes, hence it is also known as otospongiosis.
The aging process has three distinct components: physiologic degeneration, extrinsic damage (nosocusis), and intrinsic damage (sociocusis). These factors are superimposed on a genetic substrate, and may be overshadowed by general age-related susceptibility to diseases and disorders.
Hearing loss is only weakly correlated with age. In preindustrial and non-industrial societies, persons retain their hearing into old age. In the Framingham cohort study, only 10% of the variability of hearing with age could be explained by age-related physiologic deterioration. Within family groups, heredity factors were dominant; across family groups, other, presumably sociocusis and nosocusis factors were dominant.
- Heredity: factors like early aging of the cochlea and susceptibility of the cochlea for drug insults are genetically determined.
- Oxidative stress
- General inflammatory conditions
Some over-the-counter as well as prescription drugs and certain industrial chemicals are ototoxic. Exposure to
these can result in temporary or permanent hearing loss.
Some medications cause irreversible damage to the ear, and are limited in their use for this reason. The most important group is the aminoglycosides (main member gentamicin). A rare mitochondrial mutation, m.1555A>G, can increase an individual's susceptibility to the ototoxic effect of aminoglycosides. Long term hydrocodone (Vicodin) abuse is known to cause rapidly progressing sensorineural hearing loss, usually without vestibular symptoms. Methotrexate, a chemotherapy agent, is also known to cause hearing loss. In most cases hearing loss does not recover when the drug is stopped. Paradoxically, methotrexate is also used in the treatment of autoimmune-induced inflammatory hearing loss.
Various other medications may reversibly degrade hearing. This includes loop diuretics, sildenafil (Viagra), high or sustained dosing of NSAIDs (aspirin, ibuprofen, naproxen, and various prescription drugs: celecoxib, etc.), quinine, and macrolide antibiotics (erythromycin, etc.).
Prolonged or repeated environmental or work-related exposure to ototoxic chemicals can also result in sensorineural hearing loss. Some of these chemicals are:
- butyl nitrite - chemical used recreationally known as 'poppers'
- carbon disulfide - a solvent used as a building block in many organic reactions
- styrene, an industrial chemical precursor of polystyrene, a plastic
- carbon monoxide, a poisonous gas resulting from incomplete combustion
- heavy metals: tin, lead, manganese, mercury
- hexane, an industrial solvent and one of the significant constituents of gasoline
- ethylbenzene, an industrial solvent used in the production of styrene
- toluene and xylene, highly poisonous petrochemical solvents. Toluene is a component of high-octane gasolne; xylene is used in the production of polyester fibers and resins.
- trichloroethylene, an industrial degreasing solvent
- Organophosphate pesticides
Adenoid hypertrophy (or enlarged adenoids) is the unusual growth ("hypertrophy") of the adenoid tonsil first described by the Danish physician Wilhelm Meyer (1824-1895) in Copenhagen in 1868. He described that a long term adenoid hypertrophy will cause an obstruction of the nasal airways. These will lead to a dentofacial growth anomaly that was defined as "adenoid facies" (see long face syndrome).
There is very little lymphoid tissue in the nasopharynx of young babies; humans are born without substantial adenoids. The mat of lymphoid tissue called adenoids starts to get sizable during the first year of life. Just how big the adenoids become is quite variable between individual children.