Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Miller-Dieker occurs in less than one in 100000 people and can occur in all races.
Recent findings in genetic research have suggested that a large number of genetic disorders, both genetic syndromes and genetic diseases, that were not previously identified in the medical literature as related, may be, in fact, highly related in the genetypical root cause of the widely varying, phenotypically-observed disorders. Thus, Alstrom syndrome is a ciliopathy. Other known ciliopathies include primary ciliary dyskinesia, Bardet-Biedl syndrome, polycystic kidney and liver disease, nephronophthisis, Meckel-Gruber syndrome and some forms of retinal degeneration.
A prognosis for Alström syndrome is complicated because it widely varies. Any person that has the syndrome have different set of disorders. Permanent blindness, deafness, and Type 2 diabetes may occur. Liver and kidney failure can progressively get worse. The life expectancy is usually reduced and the patients rarely live past 50 years old.
Most individuals with this condition do not survive beyond childhood. Individuals with MDS usually die in infancy and therefore do not live to the age where they can reproduce and transmit MDS to their offspring.
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
This includes Chediak-Higashi syndrome and Elejalde syndrome (neuroectodermal melanolysosomal disease).
There is no specific treatment for micro syndrome, but there are ways to help the disorders, and illnesses that come with it. Many individuals with Micro Syndrome need permanent assistance from their disorders and inabilities to move and support themselves. Seizures are not uncommon and patients should get therapy to help control them, and many patients also require wheelchairs to move, so an assistant would be needed at all times.
Those with micro syndrome are born appearing normal. At the age of one, mental and physical delays become apparent, along with some limb spasms. By the age of eight micro syndrome has already set in, and the patient will have joint contractures, Ocular Atrophy will become noticeable, the patient will most likely lose ability to walk, speak, and sometimes move at all.
The rare cases that have been examined are often within families, or the people that have cases of micro syndrome have a mutation in their genes.
It can be associated with "RAB3GAP".
Autoimmune polyendocrine syndrome type 2, a form of autoimmune polyendocrine syndrome also known as Schmidt's syndrome, or APS-II, is the most common form of the polyglandular failure syndromes. It is heterogeneous and has not been linked to one gene. Rather, individuals are at a higher risk when they carry a particular human leukocyte antigen (HLA-DQ2, HLA-DQ8 and HLA-DR4). APS-II affects women to a greater degree than men.
Symptoms(and signs) that are consistent with this disorder are the following:
Chromosomal deletion syndromes result from deletion of parts of chromosomes. Depending on the location, size, and whom the deletion is inherited from, there are a few known different variations of chromosome deletions. Chromosomal deletion syndromes typically involve larger deletions that are visible using karyotyping techniques. Smaller deletions result in Microdeletion syndrome, which are detected using fluorescence in situ hybridization (FISH)
Examples of chromosomal deletion syndromes include 5p-Deletion (cri du chat syndrome), 4p-Deletion (Wolf-Hirschhorn syndrome), Prader–Willi syndrome, and Angelman syndrome.
Muir–Torre was observed to occur in 14 of 50 families (28%) and in 14 of 152 individuals (9.2%) with Lynch syndrome, also known as HNPCC.
The 2 major MMR proteins involved are hMLH1 and hMSH2. Approximately 70% of tumors associated with the MTS have microsatellite instability. While germline disruption of hMLH1 and hMSH2 is evenly distributed in HNPCC, disruption of hMSH2 is seen in greater than 90% of MTS patients.
Gastrointestinal and genitourinary cancers are the most common internal malignancies. Colorectal cancer is the most common visceral neoplasm in Muir–Torre syndrome patients.
Smith–Magenis syndrome is a chromosomal condition related to low copy repeats of specific segments of chromosome 17. Most people with SMS have a deletion of genetic material from a specific region of chromosome 17 (17p11.2). Although this region contains multiple genes, recently researchers discovered that the loss of one particular gene the retinoic acid induced 1 or "RAI1" is responsible for most of the characteristic features of this condition. Also, other genes within the chromosome 17 contribute to the variability and severity of the clinical features. The loss of other genes in the deleted region may help explain why the features of Smith–Magenis syndrome vary among affected individuals. A small percentage of people with Smith–Magenis syndrome have a mutation in the "RAI1" gene instead of a chromosomal deletion.
These deletions and mutations lead to the production of an abnormal or nonfunctional version of the "RAI1" protein. "RAI1" is a transcription factor that regulates the expression of multiple genes, including several that are involved in controlling circadian rhythm, such as "CLOCK". The groups led by James Lupski (Baylor College of Medicine) and Sarah Elsea (Virginia Commonwealth University) are in the process of studying the exact function of this gene in relation to Smith Magenis Syndrome.
SMS is typically not inherited. This condition usually results from a genetic change that occurs during the formation of reproductive cells (eggs or sperm) or in early fetal development. People with Smith–Magenis syndrome most often have no history of the condition in their family.
Smith–Magenis Syndrome (SMS) is a genetic disorder with features including intellectual disability, facial abnormalities, difficulty sleeping, and numerous behavioral problems such as self-harm. Smith–Magenis syndrome affects an estimated between 1 in 15,000 to 1 in 25,000 individuals.
It is a microdeletion syndrome characterized by an abnormality in the short (p) arm of chromosome 17 and is sometimes called the 17p- syndrome.
Genetic
- Inborn errors of metabolism
1. Congenital disorder of glycosylation
2. Mitochondrial disorders
3. Peroxisomal disorder
4. Glucose transporter defect
5. Menkes disease
6. Congenital disorders of amino acid metabolism
7. Organic acidemia
Syndromes
- Contiguous gene deletion
1. 17p13.3 deletion (Miller–Dieker syndrome)
- Single gene defects
1. Rett syndrome (primarily girls)
2. Nijmegen breakage syndrome
3. X-linked lissencephaly with abnormal genitalia
4. Aicardi–Goutières syndrome
5. Ataxia telangiectasia
6. Cohen syndrome
7. Cockayne syndrome
Acquired
- Disruptive injuries
1. Traumatic brain injury
2. Hypoxic-ischemic encephalopathy
3. Ischemic stroke
4. Hemorrhagic stroke
- Infections
1. Congenital HIV encephalopathy
2. Meningitis
3. Encephalitis
- Toxins
1. Lead poisoning
2. Chronic renal failure
- Deprivation
1. Hypothyroidism
2. Anemia
3. Congenital heart disease
4. Malnutrition
Genetic factors may play a role in causing some cases of microcephaly. Relationships have been found between autism, duplications of chromosomes, and macrocephaly on one side. On the other side, a relationship has been found between schizophrenia, deletions of chromosomes, and microcephaly. Moreover, an association has been established between common genetic variants within known microcephaly genes ("MCPH1, CDK5RAP2") and normal variation in brain structure as measured with magnetic resonance imaging (MRI)i.e., primarily brain cortical surface area and total brain volume.
The spread of Aedes mosquito-borne Zika virus has been implicated in increasing levels of congenital microcephaly by the International Society for Infectious Diseases and the US Centers for Disease Control and Prevention. Zika can spread from a pregnant woman to her fetus. This can result in other severe brain malformations and birth defects. A study published in The New England Journal of Medicine has documented a case in which they found evidence of the Zika virus in the brain of a fetus that displayed the morphology of microcephaly.
Isolated
1. Familial (autosomal recessive) microcephaly
2. Autosomal dominant microcephaly
3. X-linked microcephaly
4. Chromosomal (balanced rearrangements and ring chromosome)
Syndromes
- Chromosomal
1. Poland syndrome
2. Down syndrome
3. Edward syndrome
4. Patau syndrome
5. Unbalanced rearrangements
- Contiguous gene deletion
1. 4p deletion (Wolf–Hirschhorn syndrome)
2. 5p deletion (Cri-du-chat)
3. 7q11.23 deletion (Williams syndrome)
4. 22q11 deletion (DiGeorge syndrome)
- Single gene defects
1. Smith–Lemli–Opitz syndrome
2. Seckel syndrome
3. Cornelia de Lange syndrome
4. Holoprosencephaly
5. Primary microcephaly 4
6. Wiedemann-Steiner syndrome
Acquired
- Disruptive injuries
1. Ischemic stroke
2. Hemorrhagic stroke
3. Death of a monozygotic twin
- Vertically transmitted infections
1. Congenital cytomegalovirus infection
2. Toxoplasmosis
3. Congenital rubella syndrome
4. Zika virus
- Drugs
1. Fetal hydantoin syndrome
2. Fetal alcohol syndrome
Other
1. Radiation exposure to mother
2. Maternal malnutrition
3. Maternal phenylketonuria
4. Poorly controlled gestational diabetes
5. Hyperthermia
6. Maternal hypothyroidism
7. Placental insufficiency
Williams syndrome (WS) is a developmental disorder that affects many parts of the body. Facial features frequently include a broad forehead, short nose, and full cheeks, an appearance that has been described as "elfin". Mild to moderate intellectual disability with particular problems with visual spatial tasks such as drawing and fewer problems with language are typical. Those affected often have an outgoing personality and interact readily with strangers. Problems with teeth, heart problems, especially supravalvular aortic stenosis, and periods of high blood calcium are common.
Williams syndrome is caused by a genetic abnormality, specifically a deletion of about 27 genes from the long arm of one of the two chromosome 7s. Typically this occurs as a random event during the formation of the egg or sperm from which a person develops. In a small number of cases it is inherited from an affected parent in an autosomal dominant manner. The different characteristic features have been linked to the loss of specific genes. The diagnosis is typically suspected based on symptoms and confirmed by genetic testing.
Treatment includes special education programs and various types of therapy. Surgery may be done to correct heart problems. Dietary changes or medications may be required for high blood calcium. The syndrome was first described in 1961 by New Zealander John C. P. Williams. Williams syndrome affects between 1 in 7,500 to 1 in 20,000 people at birth. Life expectancy is less than that of the general population mostly due to the increased rates of heart disease.
Williams syndrome is a microdeletion syndrome caused by the spontaneous deletion of genetic material from the region q11.23 of one member of the pair of chromosome 7, so that the person is hemizygous for those genes. The deleted region includes more than 25 genes, and researchers believe that being hemizygous for these genes probably contributes to the characteristic features of this syndrome. "CLIP2", "ELN", "GTF2I", "GTF2IRD1", and "LIMK1" are among the genes that are typically deleted from one chromosome in people with Williams syndrome. Researchers have found this hemizygosity for the "ELN" gene, which codes for the protein elastin, is associated with the connective-tissue abnormalities and cardiovascular disease (specifically supravalvular aortic stenosis and supravalvular pulmonary stenosis) found in many people with this syndrome. The insufficient supply of elastin may also be the cause of full cheeks, harsh or hoarse voice, hernias and bladder diverticula often found in those with Williams syndrome. Studies suggest that hemizygosity in "LIMK1", "GTF2I", "GTF2IRD1", and perhaps other genes may help explain the characteristic difficulties with visual–spatial tasks. Additionally, there is evidence that the hemizygosity in several of these genes, including "CLIP2", may contribute to the unique behavioral characteristics, learning disabilities, and other cognitive difficulties seen in Williams syndrome.
The various mutations may be responsible for the untimely initiation of apoptosis in myelocytes, producing their premature destruction. There may be, in addition, other underlying molecular/genetic changes producing DNA mutations and genome instability, which contribute to initiation and progression of this disease.
Kostmann syndrome is a group of diseases that affect myelopoiesis, causing a congenital form of neutropenia (severe congenital neutropenia [SCN]), usually without other physical malformations. SCN manifests in infancy with life-threatening bacterial infections.
Most cases of SCN respond to treatment with granulocyte colony-stimulating factor (filgrastim), which increases the neutrophil count and decreases the severity and frequency of infections. Although this treatment has significantly improved survival, people with SCN are at risk of long-term complications such as hematopoietic clonal disorders (myelodysplastic syndrome, acute myeloid leukemia).
Kostmann disease (SCN3), the initial subtype recognized, was clinically described in 1956. This type has an autosomal recessive inheritance pattern, whereas the most common subtype of Kostmann syndrome, SCN1, shows autosomal dominant inheritance.
Microstomia ("micro-" a combining form meaning small + "-stomia" a combining form meaning mouth = (abnormally) "small mouth") is a clinical feature of many craniofacial syndromes, including Freeman-Sheldon syndrome and Sheldon-Hall syndromes (or distal arthrogryposis multiplex congenita). It may present with whistling-face feature, as well, as in Freeman-Sheldon syndrome. In this syndrome, it impairs alimentation and may require repeated oral surgeries (called commissurotomy) to improve function.
It can also be a feature of systemic scleroderma.
Prader-WIlli (PWS) and Angelman syndrome (AS) are distinct neurogenetic disorders caused by chromosomal deletions, uniparental disomy or loss of the imprinted gene expression in the 15q11-q13 region. Whether an individual exhibits PWS or AS depends on if there is a lack of the paternally expressed gene to contribute to the region.
PWS is frequently found to be the reason for secondary obesity due to early onset hyperphagia - the abnormal increase in appetite for consumption of food.There are known three molecular causes of Prader–Willi syndrome development. One of them consists in micro-deletions of the chromosome region 15q11–q13. 70% of patients present a 5–7-Mb "de novo" deletion in the proximal region of the paternal chromosome 15. The second frequent genetic abnormality (~ 25–30% of cases) is maternal uniparental disomy of chromosome 15. The mechanism is due to maternal meiotic non-disjunction followed by mitotic loss of the paternal chromosome 15 after fertilization. The third cause for PWS is the disruption of the imprinting process on the paternally inherited chromosome 15 (epigenetic phenomena). This disruption is present in approximately 2–5% of affected individuals. Less than 20% of individuals with an imprinting defect are found to have a very small deletion in the PWS imprinting centre region, located at the 5′ end of the SNRPN gene.
AS is a severe debilitating neurodevelopmental disorder characterized by mental retardation, speech impairment, seizures, motor dysfunction, and a high prevalence of autism. The paternal origin of the genetic material that is affected in the syndrome is important because the particular region of chromosome 15 involved is subject to parent-of-origin imprinting, meaning that for a number of genes in this region, only one copy of the gene is expressed while the other is silenced through imprinting. For the genes affected in PWS, it is the maternal copy that is usually imprinted (and thus is silenced), while the mutated paternal copy is not functional.
Muir–Torre syndrome (MTS) is a rare hereditary, autosomal dominant cancer syndrome that is thought to be a subtype of HNPCC. Individuals are prone to develop cancers of the colon, genitourinary tract, and skin lesions, such as keratoacanthomas and sebaceous tumors. The genes affected are MLH1, MSH2, and more recently, MSH6, and are involved in DNA mismatch repair.
This is a rare disease with prevalence about 1 in 200,000 to 1 in 600,000. Studies showed that mutations in "CUBN" or "AMN" clustered particularly in the Scandinavian countries and the Eastern Mediterranean regions. Founder effect, higher clinical awareness to IGS, and
frequent consanguineous marriages all play a role in the higher prevalence of IGS among these populations
Sertoli cell-only syndrome (a.k.a. Del Castillo syndrome and germ cell aplasia ) is a disorder characterized by male sterility without sexual abnormality. It describes a condition of the testes in which only Sertoli cells line the seminiferous tubules.